Quantum locally compact metric spaces

被引:29
|
作者
Latremoliere, Frederic [1 ]
机构
[1] Univ Denver, Dept Math, Denver, CO 80208 USA
关键词
Noncommutative metric geometry; Monge-Kantorovich distance; Non-unital C*-algebras; Quantum metric spaces; Lip-norms; Moyal planes; ALGEBRAS;
D O I
10.1016/j.jfa.2012.10.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of a quantum locally compact metric space, which is the noncommutative analogue of a locally compact metric space, and generalize to the non-unital setting the notion of quantum metric spaces introduced by Rieffel. We then provide several examples of such structures, including the Moyal plane, compact quantum metric spaces and locally compact metric spaces. This paper provides an answer to the question raised in the literature about the proper notion of a quantum metric space in the non-unital setup and offers important insights into noncommutative geometry for non-compact quantum spaces. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:362 / 402
页数:41
相关论文
共 50 条
  • [1] Images of locally compact metric spaces
    Li Zhaowen
    [J]. Acta Mathematica Hungarica, 2003, 99 : 81 - 88
  • [2] SEGMENTS IN LOCALLY COMPACT METRIC SPACES
    DOOLEY, RA
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A342 - A342
  • [3] Images of locally compact metric spaces
    Li, ZW
    [J]. ACTA MATHEMATICA HUNGARICA, 2003, 99 (1-2) : 81 - 88
  • [4] Compact quantum metric spaces
    Rieffel, MA
    [J]. OPERATOR ALGEBRAS, QUANTIZATION, AND NONCOMMUTATIVE GEOMETRY: A CENTENNIAL CELEBRATION HONORING JOHN VON NEUMANN AND MARSHALL H. STONE, 2004, 365 : 315 - 330
  • [5] On compact images of locally separable metric spaces
    Ying, G
    [J]. TOPOLOGY PROCEEDINGS, VOL 27, NO 1, 2003, 2003, : 351 - 360
  • [6] On planarity of compact, locally connected, metric spaces
    Richter, R. Bruce
    Rooney, Brendan
    Thomassen, Carsten
    [J]. COMBINATORICA, 2011, 31 (03) : 365 - 376
  • [7] On planarity of compact, locally connected, metric spaces
    R. Bruce Richter
    Brendan Rooney
    Carsten Thomassen
    [J]. Combinatorica, 2011, 31 : 365 - 376
  • [8] EMBEDDINGS OF LOCALLY METRIC COMPACT SPACES INTO R
    HOLSZTYNSKI, W
    [J]. BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1977, 25 (11): : 1125 - 1127
  • [9] Lipschitz free spaces over locally compact metric spaces
    Gartland, Chris
    [J]. STUDIA MATHEMATICA, 2021, 258 (03) : 317 - 342
  • [10] θ-Deformations as Compact Quantum Metric Spaces
    Hanfeng Li
    [J]. Communications in Mathematical Physics, 2005, 256 : 213 - 238