Variable pitch control for vertical-axis wind turbines

被引:7
|
作者
Horb, S. [1 ]
Fuchs, R. [1 ]
Immas, A. [1 ]
Silvert, F. [1 ]
Deglaire, P. [2 ]
机构
[1] NENUPHAR, Campus Inst Pasteur,1 Rue Prof Calmett, F-59000 Lille, France
[2] ADWEN, Puteaux La Defense, France
关键词
Vertical-axis wind turbine; individual pitch control; variable pitch; power maximization; thrust limitation; torque limitation;
D O I
10.1177/0309524X18756972
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
NENUPHAR aims at developing the next generation of large-scale floating offshore vertical-axis wind turbine. To challenge the horizontal-axis wind turbine, the variable blade pitch control appears to be a promising solution. This article focuses on blade pitch law optimization and resulting power and thrust gain depending on the operational conditions. The aerodynamics resulting from the implementation of a variable blade pitch control are studied through numerical simulations, either with a three-dimensional vortex code or with two-dimensional Navier-stokes simulations (two-dimensional computational fluid dynamics). Results showed that the three-dimensional vortex code used as quasi-two-dimensional succeeded to give aerodynamic loads in very good agreement with two-dimensional computational fluid dynamics simulation results. The three-dimensional-vortex code was then used in three-dimensional configuration, highlighting that the variable pitch can enhance the vertical-axis wind turbine power coefficient (C-p) by more than 15% in maximum power point tracking mode and decrease it by more than 75% in power limitation mode while keeping the thrust below its rated value.
引用
收藏
页码:128 / 135
页数:8
相关论文
共 50 条
  • [31] Dynamic Analysis of Vertical-Axis Wind Turbines under the Rotation
    Li, Chunxiang
    Yu, Anqi
    Li, Jinhua
    Xiang, Bian
    [J]. POWER AND ENERGY ENGINEERING CONFERENCE 2010, 2010, : 634 - 638
  • [32] A new dynamic inflow model for vertical-axis wind turbines
    De Tavernier, Delphine
    Ferreira, Carlos S.
    [J]. WIND ENERGY, 2020, 23 (05) : 1196 - 1209
  • [33] ELECTRIC-POWER FROM VERTICAL-AXIS WIND TURBINES
    TOURYAN, KJ
    STRICKLAND, JH
    BERG, DE
    [J]. JOURNAL OF PROPULSION AND POWER, 1987, 3 (06) : 481 - 493
  • [34] Effect of Dynamic Stall on the Aerodynamics of Vertical-Axis Wind Turbines
    Scheurich, Frank
    Brown, Richard E.
    [J]. AIAA JOURNAL, 2011, 49 (11) : 2511 - 2521
  • [35] Review of Recent Patents on Vertical-Axis Wind Turbines (VAWTs)
    Zoucha, Jack
    Crespo, Cristina
    Wolf, Hanna
    Aboy, Mateo
    [J]. Recent Patents on Engineering, 2023, 17 (04) : 3 - 15
  • [36] AERODYNAMICS OF SMALL-SCALE VERTICAL-AXIS WIND TURBINES
    PARASCHIVOIU, I
    DESY, P
    [J]. JOURNAL OF PROPULSION AND POWER, 1986, 2 (03) : 282 - 288
  • [37] Experimental investigation of an optimized airfoil for vertical-axis wind turbines
    Ragni, Daniele
    Ferreira, Carlos Simao
    Correale, Giuseppe
    [J]. WIND ENERGY, 2015, 18 (09) : 1629 - 1643
  • [38] Towards the evolution of vertical-axis wind turbines using supershapes
    Preen R.J.
    Bull L.
    [J]. Evolutionary Intelligence, 2014, 7 (3) : 155 - 167
  • [39] MATHEMATICAL MODELLING OF VERTICAL-AXIS WIND TURBINES ROTORS AERODYNAMICS
    Dovgyi, S.
    Moiseienko, S.
    Polevoy, O.
    Redchyts, D.
    Tarasov, S.
    [J]. TOPICAL PROBLEMS OF FLUID MECHANICS 2024, 2024, : 31 - 37
  • [40] Vertical-Axis Wind Turbines for Powering Cellular Communication Towers
    Plourde, B.
    Abraham, J.
    Mowry, G.
    Minkowycz, W.
    [J]. NANOTECHNOLOGY 2011: BIO SENSORS, INSTRUMENTS, MEDICAL, ENVIRONMENT AND ENERGY, NSTI-NANOTECH 2011, VOL 3, 2011, : 750 - 753