STEADY MOTION THROUGH A BRANCHING TUBE

被引:23
|
作者
SMITH, FT [1 ]
机构
[1] UNIV LONDON,IMPERIAL COLL SCI & TECHNOL,DEPT MATH,LONDON SW7 2AZ,ENGLAND
关键词
D O I
10.1098/rspa.1977.0093
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:167 / 187
页数:21
相关论文
共 50 条
  • [31] ON THE STEADY FLOW OF A GAS THROUGH A TUBE WITH HEAT EXCHANGE OR CHEMICAL REACTION
    CHAMBRE, P
    LIN, CC
    JOURNAL OF THE AERONAUTICAL SCIENCES, 1946, 13 (10): : 537 - 542
  • [32] Convective diffusion in steady flow through a tube with a retentive and absorptive wall
    Ng, Chiu-On
    Rudraiah, N.
    PHYSICS OF FLUIDS, 2008, 20 (07)
  • [33] Measurements of steady turbulent flow through a rigid simulated collapsed tube
    Bertram, CD
    Muller, M
    Ramus, F
    Nugent, AH
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2001, 39 (04) : 422 - 427
  • [34] Measurements of steady turbulent flow through a rigid simulated collapsed tube
    C. D. Bertram
    M. Muller
    F. Ramus
    A. H. Nugent
    Medical and Biological Engineering and Computing, 2001, 39 : 422 - 427
  • [35] DUAL SOLUTIONS FOR STEADY LAMINAR-FLOW THROUGH A CURVED TUBE
    DENNIS, SCR
    NG, M
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1982, 35 (AUG): : 305 - 324
  • [36] THE STEADY MOTION OF AN INTERFACE BETWEEN 2 VISCOUS-LIQUIDS IN A CAPILLARY-TUBE
    TILTON, JN
    CHEMICAL ENGINEERING SCIENCE, 1988, 43 (06) : 1371 - 1384
  • [37] Tube or not tube: Remodeling epithelial tissues by branching morphogenesis
    Affolter, M
    Bellusci, S
    Itoh, N
    Shilo, B
    Thiery, JP
    Werb, Z
    DEVELOPMENTAL CELL, 2003, 4 (01) : 11 - 18
  • [38] AXISYMMETRIC CREEPING MOTION OF DROPS THROUGH A PERIODICALLY CONSTRICTED TUBE
    MARTINEZ, MJ
    UDELL, KS
    DROPS AND BUBBLES: THIRD INTERNATIONAL COLLOQUIUM, 1989, 197 : 222 - 234
  • [39] THE CREEPING MOTION OF IMMISCIBLE DROPS THROUGH A CONVERGING DIVERGING TUBE
    OLBRICHT, WL
    LEAL, LG
    JOURNAL OF FLUID MECHANICS, 1983, 134 (SEP) : 329 - 355
  • [40] Supercritical branching Brownian motion with catalytic branching at the origin
    Li Wang
    Guowei Zong
    Science China Mathematics, 2020, 63 : 595 - 616