Multi-Group Confirmatory Factor Analysis for Testing Measurement Invariance in Mixed Item Format Data

被引:0
|
作者
Koh, Kim H. [1 ]
Zumbo, Bruno D. [2 ,3 ,4 ]
机构
[1] Nanyang Technol Univ, Natl Inst Educ, Ctr Res Pedag & Practice, Singapore, Singapore
[2] Univ British Columbia, Measurement Evaluat & Res Methodol, Vancouver, BC, Canada
[3] Univ British Columbia, Dept Stat, Vancouver, BC, Canada
[4] Univ British Columbia, Inst Appl Math, Vancouver, BC, Canada
关键词
Multi-Group Confirmatory Factor Analysis; Measurement Invariance; Binary and Ordinal Items;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This simulation study investigated the empirical Type I error rates of using the maximum likelihood estimation method and Pearson covariance matrix for multi-group confirmatory factor analysis (MGCFA) of full and strong measurement invariance hypotheses with mixed item format data that are ordinal in nature. The results indicate that mixed item formats and sample size combinations do not result in inflated empirical Type I error rates for rejecting the true measurement invariance hypotheses. Therefore, although the common methods are in a sense sub-optimal, they don't lead to researchers claiming that measures are functioning differently across groups -i.e., a lack of measurement invariance.
引用
收藏
页码:471 / 477
页数:7
相关论文
共 50 条
  • [31] The impact of item parceling on structural parameter invariance in multi-group structural equation modeling
    Lee, Jihyun
    Whittaker, Tiffany A.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2021, 28 (05) : 684 - 698
  • [32] MULTI-GROUP CONFIRMATORY FACTOR ANALYSIS OF THE PERCEIVED STRESS SCALE-10 IN HISPANIC AMERICANS
    Baik, Sharon H.
    Fox, Rina S.
    Mills, Sarah D.
    Roesch, Scott C.
    Sadler, Georgia Robins
    Klonoff, Elizabeth A.
    Malcarne, Vanessa L.
    ANNALS OF BEHAVIORAL MEDICINE, 2015, 49 : S125 - S125
  • [33] Leadership Excellence in Corporate Communications: A Multi-Group Test of Measurement Invariance
    Meng, Juan
    SAGE OPEN, 2021, 11 (04):
  • [34] Approximate measurement invariance and longitudinal confirmatory factor analysis: concept and application with panel data
    Seddig, Daniel
    Leitgoeb, Heinz
    SURVEY RESEARCH METHODS, 2018, 12 (01): : 29 - 41
  • [35] Permutation Randomization Methods for Testing Measurement Equivalence and Detecting Differential Item Functioning in Multiple-Group Confirmatory Factor Analysis
    Jorgensen, Terrence D.
    Kite, Benjamin A.
    Chen, Po-Yi
    Short, Stephen D.
    PSYCHOLOGICAL METHODS, 2018, 23 (04) : 708 - 728
  • [36] A Primer to (Cross-Cultural) Multi-Group Invariance Testing Possibilities in R
    Fischer, Ronald
    Karl, Johannes A.
    FRONTIERS IN PSYCHOLOGY, 2019, 10
  • [37] Perceptual Differences of the Multidimensional Value of a Relationship with Agribusiness in South Mozambique: A Multi-group Confirmatory Factor Analysis
    Joaquim, Joana M. M.
    Sampaio, Ana
    Mosca, Joao
    AFRICAN JOURNAL OF EMPLOYEE RELATIONS, 2022, 46
  • [38] A comparison of item response theory and confirmatory factor analytic methodologies for establishing measurement equivalence/invariance
    Meade, AW
    Lautenschlager, GJ
    ORGANIZATIONAL RESEARCH METHODS, 2004, 7 (04) : 361 - 388
  • [39] Multi-group multi-time point confirmatory factor analysis of the triadic structure of temperament: A nonhuman primate model
    Wood, Elizabeth K.
    Higley, James D.
    Champoux, Maribeth
    Marsiske, Michael
    Olsen, Joseph A.
    Suomi, Stephen J.
    Kay, Daniel B.
    DEVELOPMENTAL PSYCHOBIOLOGY, 2021, 63 (01) : 65 - 73
  • [40] Multi-group measurement invariance of the multiple sclerosis walking scale-12?
    Motl, Robert W.
    Mullen, Sean
    McAuley, Edward
    NEUROLOGICAL RESEARCH, 2012, 34 (02) : 149 - 152