Ideal Convergence Sequence Spaces Defined by a Musielak-Orlicz Function

被引:0
|
作者
Raj, Kuldip [1 ]
Sharma, Sunil K. [1 ]
机构
[1] Shri Mata Vaishno Devi Univ, Sch Math, Katra 182320, J&K, India
来源
THAI JOURNAL OF MATHEMATICS | 2013年 / 11卷 / 03期
关键词
paranorm space; I-convergence; difference sequence spaces; Orlicz function; Musielak-Orlicz function;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we introduce some sequence spaces using ideal convergence and Musielak-Orlicz function M= (M-k) and examine some properties of the resulting sequence spaces.
引用
收藏
页码:577 / 587
页数:11
相关论文
共 50 条
  • [31] Some Seminormed Difference Sequence Spaces over n-Normed Spaces Defined by a Musielak-Orlicz Function of Order (α, β)
    Mohiuddine, S. A.
    Sharma, Sunil K.
    Abuzaid, Dina A.
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [32] Maluta's Coefficient of Musielak-Orlicz Sequence Spaces
    Hui Li YAO Department of Mathematics
    Acta Mathematica Sinica,English Series, 2005, (04) : 699 - 704
  • [33] Some sequence spaces of Invariant means and lacunary defined by a Musielak-Orlicz function over n-normed spaces
    Sharma, Sunil K.
    Raj, Kuldip
    Sharma, Ajay K.
    TBILISI MATHEMATICAL JOURNAL, 2018, 11 (01): : 31 - 47
  • [34] Some multiplier generalized difference sequence spaces over n-normed spaces defined by a Musielak-Orlicz function
    Raj K.
    Sharma S.K.
    Siberian Advances in Mathematics, 2014, 24 (3) : 193 - 203
  • [35] On some geometric properties in Musielak-Orlicz sequence spaces
    Cui, YN
    Thompson, HB
    FUNCTION SPACES, PROCEEDINGS, 2000, 213 : 149 - 157
  • [36] UNIFORM ROTUNDITY OF MUSIELAK-ORLICZ SEQUENCE-SPACES
    KAMINSKA, A
    JOURNAL OF APPROXIMATION THEORY, 1986, 47 (04) : 302 - 322
  • [37] SOME SEQUENCE SPACES OVER n-NORMED SPACES DEFINED BY FRACTIONAL DIFFERENCE OPERATOR AND MUSIELAK-ORLICZ FUNCTION
    Mursaleen, M.
    Sharma, Sunil K.
    Qamaruddin
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (02): : 211 - 225
  • [38] The Musielak-Orlicz Herz spaces
    Dong, Baohua
    Li, Yu
    Xu, Jingshi
    NEW YORK JOURNAL OF MATHEMATICS, 2023, 29 : 1287 - 1301
  • [39] ON COMPLETENESS OF MUSIELAK-ORLICZ SPACES
    WISLA, M
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1989, 10 (03) : 292 - 300
  • [40] Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 1 - 57