EXTENDED WEYL-TYPE THEOREMS FOR DIRECT SUMS

被引:2
|
作者
Berkani, M. [1 ]
Kachad, M. [1 ]
Zariouh, H. [2 ,3 ]
机构
[1] Univ Mohammed 1, Sci Fac Oujda, Dept Math, Operator Theory Team, Oujda, Morocco
[2] Ctr Reg Metiers Educ & Format, Oujda, Morocco
[3] Univ Mohammed 1, Fac Sci Oujda, Dept Math, Equipe Theorie Operateurs, Oujda, Morocco
关键词
property (gab); property (gaw); direct sums; B-Weyl spectrum;
D O I
10.2478/dema-2014-0032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the stability of extended Weyl and Browdertype theorems for orthogonal direct sum S circle plus T, where S and T are bounded linear operators acting on Banach space. Two counterexamples shows that property (ab), in general, is not preserved under direct sum. Nonetheless, and under the assumptions that Pi(0)(a) (T) subset of sigma(a) (S) and Pi(0)(a) (S) subset of sigma(a) (T), we characterize preservation of property (ab) under direct sum S circle plus T. Furthermore, we show that if S and T satisfy generalized a-Browder's theorem, then S circle plus T satisfies generalized a-Browder's theorem if and only if sigma(SBF)-(+) (S circle plus T)= sigma(SBF)-(+) (S)boolean OR sigma(SBF)-(+) (T); which improves a recent result of [13] by removing certain extra assumptions.
引用
收藏
页码:411 / 422
页数:12
相关论文
共 50 条
  • [31] MEASURING STANDARDS IN WEYL-TYPE THEORIES
    ISRAELIT, M
    FOUNDATIONS OF PHYSICS, 1989, 19 (01) : 77 - 90
  • [32] On some discrete Weyl-type inequalities of Pachpatte
    Alic, M
    Pearce, CEM
    Pecaric, J
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1996, 27 (06): : 575 - 579
  • [33] Normalized Weyl-type *-product on Kahler manifolds
    Masuda, T
    MODERN PHYSICS LETTERS A, 2000, 15 (35) : 2177 - 2182
  • [34] Weyl-type fields with geodesic lines of force
    Guilfoyle, BS
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (04) : 2032 - 2045
  • [35] EXTENDED WEYL THEOREMS AND PERTURBATIONS
    Rashid, M. H. M.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2013, 19 (01): : 80 - 96
  • [36] On some discrete Weyl-type inequalities of Pachpatte
    Alic, M.
    Pearce, C. E. M.
    Pecaric, J.
    Indian Journal of Pure and Applied Mathematics, 1996, 27 (06)
  • [37] A-BROWDER-TYPE THEOREMS FOR DIRECT SUMS OF OPERATORS
    Berkani, Mohammed
    Sarih, Mustapha
    Zariouh, Hassan
    MATHEMATICA BOHEMICA, 2016, 141 (01): : 99 - 108
  • [38] On some new Weyl-type discrete inequalities
    Ma, QH
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2001, 32 (02): : 271 - 276
  • [39] Normalized Weyl-type *-product on Kahler manifolds
    Masuda, T
    FRONTIERS OF FUNDAMENTAL PHYSICS 4, 2001, : 207 - 212
  • [40] A Weyl-type equidistribution theorem in finite characteristic
    Bergelson, V.
    Leibman, A.
    ADVANCES IN MATHEMATICS, 2016, 289 : 928 - 950