MICELLAR SOLUTIONS IN SHEAR - VISCOSITY AND NORMAL STRESS

被引:10
|
作者
WANG, SQ [1 ]
机构
[1] CASE WESTERN RESERVE UNIV,DEPT PHYS,CLEVELAND,OH 44106
关键词
RHEOLOGY OF MICELLAR SOLUTIONS; VISCOSITY; NORMAL STRESS; SHEAR FLOW;
D O I
10.1007/BF00652878
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We apply a recent non-equilibrium statistical mechanical theory for nonionic micellar solutions to study their viscoelastic properties. It is shown that shear-induced growth in average micellar size does not lead to the shear-thickening observed experimentally in ionic micellar systems, suggesting that intermicelle electrostatic interactions may be responsible for the viscosity build-up. Instead, we find shear thinning and gradual increase of normal stress throughout the studied range of shear rates.
引用
收藏
页码:1130 / 1134
页数:5
相关论文
共 50 条
  • [21] On the shear banding flow of elongated micellar solutions
    Bautista, F
    Soltero, JFA
    Pérez-López, JH
    Puig, JE
    Manero, O
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2000, 94 (01) : 57 - 66
  • [22] On the modelling of the shear thickening behavior in micellar solutions
    Landazuri, Gabriel
    Macias, Emma R.
    Garcia-Sandoval, Juan P.
    Hernandez, Elena
    Manero, Octavio
    Puig, Jorge E.
    Bautista, Fernando
    RHEOLOGICA ACTA, 2016, 55 (07) : 547 - 558
  • [23] On the modelling of the shear thickening behavior in micellar solutions
    Gabriel Landázuri
    Emma R. Macías
    Juan P. García-Sandoval
    Elena Hernández
    Octavio Manero
    Jorge E. Puig
    Fernando Bautista
    Rheologica Acta, 2016, 55 : 547 - 558
  • [24] Shear banding instability in wormlike micellar solutions
    M.M. Britton
    P.T. Callaghan
    The European Physical Journal B - Condensed Matter and Complex Systems, 1999, 7 : 237 - 249
  • [25] Shear banding structure in viscoelastic micellar solutions
    E. Cappelaere
    R. Cressely
    Colloid and Polymer Science, 1997, 275 : 407 - 418
  • [26] SHEAR VISCOSITY OF AQUEOUS ELECTROLYTE SOLUTIONS
    Makhlaichuk, V. M.
    UKRAINIAN JOURNAL OF PHYSICS, 2019, 64 (03): : 230 - 237
  • [27] NON-NEWTONIAN SHEAR VISCOSITY, NORMAL STRESS COEFFICIENTS AND CORRESPONDING STATES IN RHEOLOGY
    OHR, YG
    EU, BC
    PHYSICS LETTERS A, 1984, 101 (07) : 338 - 342
  • [28] Semiempirical models for steady-shear viscosity and prediction of first normal stress function
    Seo, Yongsok
    Journal of Applied Polymer Science, 1994, 52 (05): : 629 - 640
  • [29] Rheology of a dilute ferrofluid droplet suspension in shear flow: Viscosity and normal stress differences
    Ishida, Shunichi
    Matsunaga, Daiki
    PHYSICAL REVIEW FLUIDS, 2020, 5 (12):
  • [30] An intriguing empirical rule for computing the first normal stress difference from steady shear viscosity data for concentrated polymer solutions and melts
    Vivek Sharma
    Gareth H. McKinley
    Rheologica Acta, 2012, 51 : 487 - 495