VORTEX DYNAMICS OF THE NONLINEAR-WAVE EQUATION

被引:32
|
作者
NEU, JC
机构
[1] Department of Mathematics, University of California, Berkeley
来源
PHYSICA D | 1990年 / 43卷 / 2-3期
关键词
D O I
10.1016/0167-2789(90)90144-E
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
ψ is a complex scalar field defined on (2 + 1 - D)-dimensional Minkowski space. It satisfies the nonlinear wave equation (NLWE) □ψ-(1-|ψ|)ψ = 0 We study the solutions which contain time-like world lines of zeros, with winding numbers +1 or -1. We call these particle-like defects of the ψ field vortices. We formulate an asymptotic "particle + field" vortex dynamics which derives from the NLWE. It is analogous to particle + field electrodynamics in 2 + 1 - D. In particular, the winding number plays the role of charge, and gradients, of arg ψ play the role of the electromagnetic field. © 1990.
引用
收藏
页码:407 / 420
页数:14
相关论文
共 50 条