GENERALIZING THE DUALITY THEOREM OF GRAPH EMBEDDINGS

被引:2
|
作者
ABUSBEIH, MZ
机构
关键词
D O I
10.1016/0012-365X(89)90156-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:11 / 23
页数:13
相关论文
共 50 条
  • [41] GENERAL THEOREM OF DUALITY
    LASRY, JM
    BERLIOCC.H
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 276 (25): : 1611 - 1614
  • [42] SUBGRADIENT DUALITY THEOREM
    SCHECHTER, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 61 (03) : 850 - 855
  • [43] ON HOWE DUALITY THEOREM
    PRZEBINDA, T
    JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 81 (01) : 160 - 183
  • [44] AN INVARIANT THEOREM IN DUALITY
    Yang Yunyan
    Li Ronglu
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2010, 47 (03) : 299 - 310
  • [45] Discontinuous duality theorem
    Yoshino, Taro
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2007, 18 (08) : 887 - 893
  • [46] SHEPHARDS DUALITY THEOREM
    JACOBSEN, SE
    JOURNAL OF ECONOMIC THEORY, 1972, 4 (03) : 458 - 464
  • [47] DUALITY THEOREM FOR MOTIVES
    Panin, I. A.
    Yagunov, S. A.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2010, 21 (02) : 309 - 315
  • [48] On a graph property generalizing planarity and flatness
    Hein van der Holst
    Rudi Pendavingh
    Combinatorica, 2009, 29 : 337 - 361
  • [49] On a graph property generalizing planarity and flatness
    van der Holst, Hein
    Pendavingh, Rudi
    COMBINATORICA, 2009, 29 (03) : 337 - 361
  • [50] Duality of graph homomorphisms
    Hell, P
    Nesetril, J
    Zhu, X
    COMBINATORICS, PAUL ERDOS IS EIGHTY, VOL. 2, 1996, 2 : 271 - 282