LARGE ENGINEERING KNOWLEDGE BASES

被引:2
|
作者
TYUGU, E [1 ]
机构
[1] ROYAL INST TECHNOL,DEPT TELEINFORMAT,S-16440 STOCKHOLM,SWEDEN
来源
关键词
KNOWLEDGE ACQUISITION; KNOWLEDGE SYSTEMS; LARGE KNOWLEDGE BASES; ENGINEERING KNOWLEDGE REPRESENTATION;
D O I
10.1016/0954-1810(93)90009-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper concerns the development of numerous knowledge bases for engineering applications and integrating them into one knowledge environment applicable in different problem domains. It discusses steps made towards building larger heterogeneous engineering knowledge bases. It analyses the requirements to large knowledge bases, presents their architecture and discusses the content and size of general-purpose engineering knowledge bases.
引用
收藏
页码:265 / 270
页数:6
相关论文
共 50 条
  • [31] Iterative focusing for finding faults in large configurator knowledge bases
    Felfernig, A.
    Friedrich, G.E.
    Jannach, D.
    Stumptner, M.
    Zanker, M.
    OGAI Journal (Oesterreichische Gesellschaft fuer Artificial Intelligence), 2002, 21 (03): : 13 - 22
  • [32] Extracting large-scale knowledge bases from the web
    Kumar, R
    Raghavan, P
    Rajagopalan, S
    Tomkins, A
    PROCEEDINGS OF THE TWENTY-FIFTH INTERNATIONAL CONFERENCE ON VERY LARGE DATA BASES, 1999, : 639 - 650
  • [33] KB-PROLOG, A PROLOG FOR VERY LARGE KNOWLEDGE BASES
    BOCCA, J
    DAHMEN, M
    FREESTON, M
    MACARTNEY, G
    PEARSON, PJ
    PROCEEDINGS OF THE SEVENTH BRITISH NATIONAL CONFERENCE ON DATABASES ( BNCOD 7 ), 1989, : 163 - 184
  • [34] Learning of OWL Class Descriptions on Very Large Knowledge Bases
    Hellmann, Sebastian
    Lehmann, Jens
    Auer, Soeren
    INTERNATIONAL JOURNAL ON SEMANTIC WEB AND INFORMATION SYSTEMS, 2009, 5 (02) : 25 - 48
  • [35] Sigma: Simple Greedy Matching for Aligning Large Knowledge Bases
    Lacoste-Julien, Simon
    Palla, Konstantina
    Davies, Alex
    Kasneci, Gjergji
    Graepel, Thore
    Ghahramani, Zoubin
    19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), 2013, : 572 - 580
  • [36] A Scalable Problem-Solver for Large Knowledge-Bases
    Chaw, Shaw-Yi
    Barker, Ken
    Porter, Bruce
    Tecuci, Dan
    Yeh, Peter Z.
    ICTAI: 2009 21ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, 2009, : 461 - +
  • [37] Semantic refinement and error correction in large terminological knowledge bases
    Geller, J
    Gu, HY
    Perl, Y
    Halper, M
    DATA & KNOWLEDGE ENGINEERING, 2003, 45 (01) : 1 - 32
  • [38] Mining Rules with Constants from Large Scale Knowledge Bases
    Wang, Xuan
    Zhang, Jingjing
    Chen, Jinchuan
    Fan, Ju
    CONCEPTUAL MODELING, ER 2018, 2018, 11157 : 521 - 535
  • [39] Reuse of constraint knowledge bases and problem solvers explored in engineering design
    Gray, Peter M. D.
    Runcie, Trevor
    Sleeman, Derek
    AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING, 2015, 29 (01): : 1 - 18
  • [40] End-user engineering of ontology-based knowledge bases
    Sanctorum, Audrey
    Riggio, Jonathan
    Maushagen, Jan
    Sepehri, Sara
    Arnesdotter, Emma
    Delagrange, Mona
    De Kock, Joery
    Vanhaecke, Tamara
    Debruyne, Christophe
    De Troyer, Olga
    BEHAVIOUR & INFORMATION TECHNOLOGY, 2022, 41 (09) : 1811 - 1829