Modified Variational Iteration Method for Sine-Gordon Equation

被引:1
|
作者
Saeed, Umer [1 ]
机构
[1] Natl Univ Sci & Technol, NUST Inst Civil Engn, Islamabad, Pakistan
关键词
Variational iteration method; Chebyshev polynomial; Sine-Gordon equation;
D O I
10.18421/TEM53-09
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce a modified variational iteration method for solving nonlinear differential equations. The main advantage of this modification is that it gives stable and relatively accurate results while increasing the domain of unknown function in differential equation, where variational iteration method becomes unstable. The proposed method is based on Chebyshev polynomial approximations in the correction functional of variational iteration method. To show the advantages of the proposed method, we use the sine-Gordon equation as a test problem.
引用
收藏
页码:305 / 312
页数:8
相关论文
共 50 条
  • [41] HAMILTONIAN STRUCTURE OF SINE-GORDON EQUATION
    BENZA, V
    MONTALDI, E
    PHYSICS LETTERS A, 1976, 56 (05) : 347 - 349
  • [42] Identifiability for Linearized Sine-Gordon Equation
    Ha, J.
    Gutman, S.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2013, 8 (01) : 106 - 121
  • [43] Weingarten surfaces and sine-Gordon equation
    Chen, WH
    Li, HZ
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (10): : 1028 - 1035
  • [44] ON RECURRENT SOLUTIONS TO THE SINE-GORDON EQUATION
    MURAKAMI, Y
    TAJIRI, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1989, 58 (06) : 2207 - 2208
  • [45] Generalized solution of Sine-Gordon equation
    Chadli, Lalla Saadia
    Melliani, Said
    Moujahid, Abdelaziz
    Elomari, M'hamed
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2015, 7 (01): : 87 - 92
  • [46] On a New Avatar of the Sine-Gordon Equation
    Sakovich, S. Yu
    NONLINEAR PHENOMENA IN COMPLEX SYSTEMS, 2018, 21 (01): : 62 - 68
  • [47] Weingarten surfaces and sine-Gordon equation
    陈维桓
    李海中
    ScienceinChina,SerA., 1997, Ser.A.1997 (10) : 1028 - 1035
  • [48] Localization of the sine-Gordon equation solutions
    Porubov, A. V.
    Fradkov, A. L.
    Bondarenkov, R. S.
    Andrievsky, B. R.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 39 : 29 - 37
  • [49] VARIATIONAL CALCULATION OF THE SINE-GORDON EFFECTIVE POTENTIAL
    KURIAKOSE, VC
    PRAMANA, 1989, 33 (02) : 271 - 276
  • [50] Integrable discretizations of the sine-Gordon equation
    Boiti, M
    Pempinelli, F
    Prinari, B
    Spire, A
    INVERSE PROBLEMS, 2002, 18 (05) : 1309 - 1324