SOR-SECANT METHODS

被引:7
|
作者
MARTINEZ, JM
机构
[1] State Univ of Campinas, Campinas
关键词
NONLINEAR SYSTEMS; QUASI-NEWTON METHODS; FIXED-POINT QUASI-NEWTON METHODS; LEAST-CHANGE SECANT UPDATE METHODS; SOP-NEWTON METHODS;
D O I
10.1137/0731011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A family of SOP-secant methods for solving large-scale nonlinear systems of equations is introduced. The components and the variables of the system are divided into m blocks. At each cycle of the method, the groups of components ace changed one at a time using a quasi-Newton (least-change secant) step. Proofs of local convergence at an ideal rate are given, which use the theory of fixed-point quasi-Newton methods [J.M. Martinez, SIAM J. Numer. Anal., 29 (1992), pp. 1413-1434]. Numerical experiments are presented.
引用
收藏
页码:217 / 226
页数:10
相关论文
共 50 条
  • [21] SECANT APPROXIMATION METHODS FOR CONVEX-OPTIMIZATION
    KAO, CY
    MEYER, RR
    [J]. MATHEMATICAL PROGRAMMING STUDY, 1981, 14 (JAN): : 143 - 162
  • [23] On the local convergence of Secant-type methods
    Amat, S
    Busquier, S
    Gutiérrez, JM
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2004, 81 (09) : 1153 - 1161
  • [24] Secant-type methods and nondiscrete induction
    Ioannis K. Argyros
    Saïd Hilout
    [J]. Numerical Algorithms, 2012, 61 : 397 - 412
  • [25] Convergence conditions for secant-type methods
    Ioannis K. Argyros
    Saïd Hilout
    [J]. Czechoslovak Mathematical Journal, 2010, 60 : 253 - 272
  • [26] SIZING AND LEAST-CHANGE SECANT METHODS
    DENNIS, JE
    WOLKOWICZ, H
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (05) : 1291 - 1314
  • [27] Improved SOR method with orderings and direct methods
    Ishiwata, E
    Muroya, Y
    [J]. JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 1999, 16 (02) : 175 - 193
  • [28] Block SOR methods for fuzzy linear systems
    Miao S.-X.
    Zheng B.
    Wang K.
    [J]. J. Appl. Math. Comp., 2008, 1-2 (201-218): : 201 - 218
  • [29] Random reordering in SOR-type methods
    Peter Oswald
    Weiqi Zhou
    [J]. Numerische Mathematik, 2017, 135 : 1207 - 1220
  • [30] Improved SOR method with orderings and direct methods
    Emiko Ishiwata
    Yoshiaki Muroya
    [J]. Japan Journal of Industrial and Applied Mathematics, 1999, 16 : 175 - 193