In this paper, we deal with an invertible null-preserving transformation into itself of a finite measure space. We prove that the uniform boundedness of the ergodic averages in a reflexive Lorentz space implies a.e. convergence. In order to do this, we study the ''good weights'' for the maximal operator associated to an invertible measure preserving transformation.
机构:
Univ Littoral Cote dOpale, Lab Math Pures & Appl Joseph Liouville, Calais F-62100, FranceUniv Littoral Cote dOpale, Lab Math Pures & Appl Joseph Liouville, Calais F-62100, France
Darwiche, Ahmad
Schneider, Dominique
论文数: 0引用数: 0
h-index: 0
机构:
Univ Littoral Cote dOpale, Lab Math Pures & Appl Joseph Liouville, Calais F-62100, FranceUniv Littoral Cote dOpale, Lab Math Pures & Appl Joseph Liouville, Calais F-62100, France
机构:
Univ Rouen Normandy, CNRS, LMRS UMR 60 85, Ave Univ,BP 12, F-76801 St Etienne Du Rouvray, FranceUniv Rouen Normandy, CNRS, LMRS UMR 60 85, Ave Univ,BP 12, F-76801 St Etienne Du Rouvray, France