A PARALLEL ALGORITHM FOR CONSTRUCTING PROJECTION POLYHEDRA

被引:0
|
作者
SHAH, NR
机构
[1] Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801
基金
美国国家科学基金会;
关键词
COMPUTATIONAL GEOMETRY; PARALLEL ALGORITHMS; PROJECTION POLYHEDRA; SIMPLE CELL COMPLEXES;
D O I
10.1016/0020-0190(93)90252-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A cell decomposition C of R(d) is called polytopical if it can be obtained as the projection of the boundary complex of a convex polyhedron P subset-of R(d+1). In this paper, we present a local condition for recognizing simple polytopical cell decompositions. Based on this, we present a parallel algorithm for the CREW PRAM model to construct P if the given simple cell decomposition C is polytopical. Our algorithm runs in O(log m) time and uses O(m/log m) processors where m is the number of facets of C. This assumes the availability of a suitable data structure for navigating among the facets of C. Such a structure can be created for R2 and R3 without any added resource penalty.
引用
收藏
页码:113 / 119
页数:7
相关论文
共 50 条
  • [31] Morphing polyhedra with parallel faces: Counterexamples
    Biedl, Therese
    Lubiw, Anna
    Spriggs, Michael J.
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2009, 42 (05): : 395 - 402
  • [32] Constructing optimal projection designs
    Elsawah, A. M.
    Tang, Yu
    Fang, Kai-Tai
    [J]. STATISTICS, 2019, 53 (06) : 1357 - 1385
  • [33] Constructing hyperbolic polyhedra using Newton's method
    Roeder, Roland K. W.
    [J]. EXPERIMENTAL MATHEMATICS, 2007, 16 (04) : 463 - 492
  • [34] Constructing protein polyhedra via orthogonal chemical interactions
    Golub, Eyal
    Subramanian, Rohit H.
    Esselborn, Julian
    Alberstein, Robert G.
    Bailey, Jake B.
    Chiong, Jerika A.
    Yan, Xiaodong
    Booth, Timothy
    Baker, Timothy S.
    Tezcan, F. Akif
    [J]. NATURE, 2020, 578 (7793) : 172 - +
  • [35] Constructing protein polyhedra via orthogonal chemical interactions
    Eyal Golub
    Rohit H. Subramanian
    Julian Esselborn
    Robert G. Alberstein
    Jake B. Bailey
    Jerika A. Chiong
    Xiaodong Yan
    Timothy Booth
    Timothy S. Baker
    F. Akif Tezcan
    [J]. Nature, 2020, 578 : 172 - 176
  • [36] The Lifting Projection of Convex Polyhedra for Finding Delaunay Triangulations
    Phan Thanh An
    Nam Dung Hoang
    Nguyen Kieu Linh
    [J]. JOURNAL OF CONVEX ANALYSIS, 2022, 29 (01) : 143 - 156
  • [37] Parallel Algorithm For Constructing a Cubic Spline on Multi-Core Processors in a Cluster
    Zaynidinov, Hakimjon
    Mallayev, Oybek
    Nurmurodov, Javohir
    [J]. 2020 IEEE 14TH INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT2020), 2020,
  • [38] AN IMPROVED PARALLEL ALGORITHM FOR CONSTRUCTING VORONOI DIAGRAM ON A MESH-CONNECTED COMPUTER
    JEONG, CS
    [J]. PARALLEL COMPUTING, 1991, 17 (4-5) : 505 - 514
  • [39] Efficient parallel branch-and-bound algorithm for constructing minimum ultrametric trees
    Yu, Kun-Ming
    Zhou, Jiayi
    Lin, Chun-Yuan
    Tang, Chuan Yi
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2009, 69 (11) : 905 - 914
  • [40] A NEARLY OPTIMAL PARALLEL ALGORITHM FOR CONSTRUCTING MAXIMAL INDEPENDENT SET IN PLANAR GRAPHS
    HE, X
    [J]. THEORETICAL COMPUTER SCIENCE, 1988, 61 (01) : 33 - 47