UNIFIED THEORY OF LYAPUNOV EXPONENTS AND A POSITIVE EXAMPLE OF DETERMINISTIC QUANTUM CHAOS

被引:55
|
作者
FAISAL, FHM
SCHWENGELBECK, U
机构
[1] Fakultät für Physik, Universität Bielefeld, D-33501 Bielefeld
关键词
D O I
10.1016/0375-9601(95)00645-J
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A unified theory of quantum Lyapunov exponents, based on the Hamilton-Jacobi formulation of quantum mechanics, is applied to Weigert's quantum cat map. It is shown to provide a definite positive example of deterministic quantum chaos in terms of extreme sensitivity on initial conditions and a positive definite Lyapunov exponent.
引用
收藏
页码:31 / 36
页数:6
相关论文
共 50 条
  • [31] Clustering and synchronization with positive Lyapunov exponents
    Grupo de Fis. Matemática, Complexo Interdisciplinar, Universidade de Lisboa, Av. Gama Pinto, 2, P1699 Lisboa Codex, Portugal
    [J]. Phys Lett Sect A Gen At Solid State Phys, 3-4 (132-138):
  • [32] Synchronization with positive conditional Lyapunov exponents
    Zhou, Changsong
    Lai, C.-H.
    [J]. Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58 (04):
  • [33] Synchronization with positive conditional Lyapunov exponents
    Zhou, CS
    Lai, CH
    [J]. PHYSICAL REVIEW E, 1998, 58 (04): : 5188 - 5191
  • [34] A note on Lyapunov exponents of deterministic strongly mixing potentials
    Bourgain, Jean
    Bourgain-Chang, Eric
    [J]. JOURNAL OF SPECTRAL THEORY, 2015, 5 (01) : 1 - 15
  • [35] POSITIVE LYAPUNOV EXPONENTS IN THE KRAMERS OSCILLATOR
    SCHIMANSKYGEIER, L
    HERZEL, H
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1993, 70 (1-2) : 141 - 147
  • [36] Clustering and synchronization with positive Lyapunov exponents
    Mendes, RV
    [J]. PHYSICS LETTERS A, 1999, 257 (3-4) : 132 - 138
  • [37] LYAPUNOV EXPONENTS FROM QUANTUM DYNAMICS
    HAAKE, F
    WIEDEMANN, H
    ZYCZKOWSKI, K
    [J]. ANNALEN DER PHYSIK, 1992, 1 (07) : 531 - 539
  • [38] Maximum Lyapunov Exponents Evidencing Chaos in Neural Activity
    Ciobanu, M.
    Ardelean, A.
    Cotoraci, C.
    Mos, L.
    [J]. JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (11) : 2600 - 2603
  • [39] VIBRATIONAL CHAOS - RATIONAL TORI, SEPARATRICES AND LYAPUNOV EXPONENTS
    JOYEUX, M
    [J]. CHEMICAL PHYSICS, 1993, 174 (02) : 157 - 166
  • [40] Chaos and Lyapunov exponents in classical and quantal distribution dynamics
    Pattanayak, AK
    Brumer, P
    [J]. PHYSICAL REVIEW E, 1997, 56 (05): : 5174 - 5177