An Efficient Algorithm for Earth Surface Interpretation from Satellite Imagery

被引:5
|
作者
Soimart, Lawankorn [1 ]
Ketcham, Mahasak [1 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Fac Informat Technol, Bangkok, Thailand
来源
ENGINEERING JOURNAL-THAILAND | 2016年 / 20卷 / 05期
关键词
Landsat; mean-shift algorithm; segmentation; remote sensing;
D O I
10.4186/ej.2016.20.5.215
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Many image segmentation algorithms are available but most of them are not fit for interpretation of satellite images. Mean-shift algorithm has been used in many recent researches as a promising image segmentation technique, which has the speed at O(kn(2)) where n is the number of data points and k is the number of average iteration steps for each data point. This method computes using a brute-force in the iteration of a pixel to compare with the region it is in. This paper proposes a novel algorithm named First-order Neighborhood Mean-shift (FNM) segmentation, which is enhanced from Mean-shift segmentation. This algorithm provides information about the relationship of a pixel with its neighbors; and makes them fall into the same region which improve the speed to O(kn). In this experiment, FNM was compared to well-known algorithms, i.e., K-mean (KM), Constrained K-mean (CKM), Adaptive K-mean (AKM), Fuzzy C-mean (FCM) and Mean-shift (MS) using the reference map from the Landsat. FNM provided better results in terms of overall error and correctness criteria.
引用
收藏
页码:215 / 228
页数:14
相关论文
共 50 条