CLASSIFICATION OF HOMOGENEOUS CONFORMALLY FLAT RIEMANNIAN MANIFOLDS

被引:8
|
作者
ALEKSEEVSKII, DV
KIMELFELD, BN
机构
关键词
D O I
10.1007/BF01812986
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:559 / 562
页数:4
相关论文
共 50 条
  • [31] ON THE DECOMPOSITION OF CONFORMALLY FLAT MANIFOLDS
    IZEKI, H
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1993, 45 (01) : 105 - 119
  • [32] The duality of conformally flat manifolds
    Huili Liu
    Masaaki Umehara
    Kotaro Yamada
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2011, 42 : 131 - 152
  • [33] Harmonic morphisms with one-dimensional fibres on conformally-flat Riemannian manifolds
    Pantilie, Radu
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 145 : 141 - 151
  • [34] A conformally flat contact Riemannian (κ,μ)-space
    Cho, JT
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2001, 32 (04): : 501 - 508
  • [35] LIMIT-SETS OF KLEINIAN-GROUPS AND CONFORMALLY FLAT RIEMANNIAN-MANIFOLDS
    IZEKI, H
    [J]. INVENTIONES MATHEMATICAE, 1995, 122 (03) : 603 - 625
  • [36] ON HOMOGENEOUS RIEMANNIAN MANIFOLDS
    AMBROSE, W
    SINGER, IM
    [J]. DUKE MATHEMATICAL JOURNAL, 1958, 25 (04) : 647 - 669
  • [37] On δ-homogeneous Riemannian manifolds
    V. N. Berestovskii
    Yu. G. Nikonorov
    [J]. Doklady Mathematics, 2007, 76 : 596 - 598
  • [38] The duality of conformally flat manifolds
    Liu, Huili
    Umehara, Masaaki
    Yamada, Kotaro
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2011, 42 (01): : 131 - 152
  • [39] On δ-homogeneous Riemannian manifolds
    Berestovskii, V. N.
    Nikonorov, Yu. G.
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (05) : 514 - 535
  • [40] On δ-homogeneous Riemannian manifolds
    Berestovskii, V. N.
    Nikonorov, Yu. G.
    [J]. DOKLADY MATHEMATICS, 2007, 76 (01) : 596 - 598