TRANSLATIONAL CONTROL BY A LONG-RANGE RNA-RNA INTERACTION - A BASEPAIR SUBSTITUTION ANALYSIS

被引:32
|
作者
VANHIMBERGEN, J [1 ]
VANGEFFEN, B [1 ]
VANDUIN, J [1 ]
机构
[1] LEIDEN UNIV, GORLAEUS LABS, DEPT BIOCHEM, POB 9502, 2300 RA LEIDEN, NETHERLANDS
关键词
D O I
10.1093/nar/21.8.1713
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
One of the two mechanisms that regulate expression of the replicase cistron in the single stranded RNA coliphages is translational coupling. This mechanism prevents ribosomes from binding at the start of the replicase cistron unless the upstream coat cistron is being translated. Genetic analysis had identified a maximal region of 132 nucleotides in the coat gene over which ribosomes should pass to activate the replicase start. Subsequent deletion studies in our laboratory had further narrowed down the regulatory region to 12 nucleotides. Here, we identify a long-distance RNA-RNA interaction of 6 base pairs as the basis for the translational polarity. The 3' side of the complementarity region is located in the coat-replicase intercistronic region, some 20 nucleotides before the start codon of the replicase. The 5' side encodes amino acids 31 and 32 of the coat protein. Mutations that disrupt the long-range interaction abolish the translational coupling. Repair of basepairing by second site base substitutions restores translational coupling.
引用
收藏
页码:1713 / 1717
页数:5
相关论文
共 50 条
  • [41] Long-range RNA-RNA interaction between the 5′ nontranslated region and the core-coding sequences of hepatitis C virus modulates the IRES-dependent translation
    Kim, YK
    Lee, SH
    Kim, CS
    Seol, SK
    Jang, SK
    RNA, 2003, 9 (05) : 599 - 606
  • [42] Natural variation in translational activities of the 5′ nontranslated RNAs of hepatitis C virus genotypes 1a and 1b:: Evidence for a long-range RNA-RNA interaction outside of the internal ribosomal entry site
    Honda, M
    Rijnbrand, R
    Abell, G
    Kim, DS
    Lemon, SM
    JOURNAL OF VIROLOGY, 1999, 73 (06) : 4941 - 4951
  • [43] RNA-RNA interaction prediction using genetic algorithm
    Soheila Montaseri
    Fatemeh Zare-Mirakabad
    Nasrollah Moghadam-Charkari
    Algorithms for Molecular Biology, 9
  • [44] Optical spectroscopic study of the effects of a single deoxyribose substitution in a ribose backbone:: Implications in RNA-RNA interaction
    Lindqvist, M
    Sarkar, M
    Winqvist, A
    Rozners, E
    Strömberg, R
    Gräslund, A
    BIOCHEMISTRY, 2000, 39 (07) : 1693 - 1701
  • [45] On RNA-RNA interaction structures of fixed topological genus
    Fu, Benjamin M. M.
    Han, Hillary S. W.
    Reidys, Christian M.
    MATHEMATICAL BIOSCIENCES, 2015, 262 : 88 - 104
  • [46] RNA-RNA interaction prediction using genetic algorithm
    Montaseri, Soheila
    Zare-Mirakabad, Fatemeh
    Moghadam-Charkari, Nasrollah
    ALGORITHMS FOR MOLECULAR BIOLOGY, 2014, 9
  • [47] Conceptual design of RNA-RNA interaction based devices
    Thaiprasit, Jittrawan
    Cheevadhanarak, Supapon
    Waraho, Dujduan
    Meechai, Asawin
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL SYSTEMS-BIOLOGY AND BIOINFORMATICS, 2012, 11 : 139 - 148
  • [48] Functional long-range RNA–RNA interactions in positive-strand RNA viruses
    Beth L. Nicholson
    K. Andrew White
    Nature Reviews Microbiology, 2014, 12 : 493 - 504
  • [49] Long-Range Architecture in a Viral RNA Genome
    Archer, Eva J.
    Simpson, Mark A.
    Watts, Nicholas J.
    O'Kane, Rory
    Wang, Bangchen
    Erie, Dorothy A.
    McPherson, Alex
    Weeks, Kevin M.
    BIOCHEMISTRY, 2013, 52 (18) : 3182 - 3190
  • [50] A Ribosome-Binding, 3′ Translational Enhancer Has a T-Shaped Structure and Engages in a Long-Distance RNA-RNA Interaction
    Gao, Feng
    Kasprzak, Wojciech
    Stupina, Vera A.
    Shapiro, Bruce A.
    Simon, Anne E.
    JOURNAL OF VIROLOGY, 2012, 86 (18) : 9828 - 9842