Regulation of Streptomyces Chitinases by Two-Component Signal Transduction Systems and their Post Translational Modifications: A Review

被引:1
|
作者
Singh, Amrathlal Rabbind [1 ,2 ]
机构
[1] Madurai Kamaraj Univ, Sch Biotechnol, Dept Genet Engn, Madurai 625021, Tamil Nadu, India
[2] Jiwaji Univ, Ctr Genom, Gwalior 475011, India
来源
关键词
Chitinase; Glycosylation; Proteolytic cleavage; Streptomyces; Two-component systems;
D O I
10.22207/JPAM.12.3.45
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
This article reviews the developments related to Streptomyces chitinases regulation and their post translational modifications. Chitinases are enzymes which cleave chitin, a polymer of N-acetylglucosamine to its monomer. Bacteria produce chitinases to fulfil their nutritional needs since by-products of chitin degradation can serve as a source of carbon and nitrogen. Chitinolytic bacteria such as Streptomyces produce multiple chitinases which act synergistically to degrade crystalline form of chitin. Streptomyces are one of the major producers of chitinases in the soil. Every Streptomyces genome sequenced till date has multiple genes for chitinases. The chitinases resulting from proteolytic cleavage have different specific activities and binding efficiency. Both of the above mentioned factors contribute to complexity of the chitinolytic system. Two component systems (TCS) are the predominant signal transduction system in bacteria that regulate a wide variety of behaviours as well as fundamental processes such as metabolism and motility. Bacteria generally use two-component signal transduction pathways to couple environmental stimuli to adaptive responses. Apart from the generalized behaviours they also regulate specialised processes such as development and virulence. Thus this review focuses on the two component systems of Streptomyces, their mechanism of action, regulation of chitinases by TCS and post-translational modifications.
引用
收藏
页码:1417 / 1433
页数:17
相关论文
共 50 条
  • [31] Determinants of specificity in two-component signal transduction
    Podgornaia, Anna I.
    Laub, Michael T.
    CURRENT OPINION IN MICROBIOLOGY, 2013, 16 (02) : 156 - 162
  • [32] Auxiliary phosphatases in two-component signal transduction
    Silversmith, Ruth E.
    CURRENT OPINION IN MICROBIOLOGY, 2010, 13 (02) : 177 - 183
  • [33] Molecular Mechanisms of Two-Component Signal Transduction
    Zschiedrich, Christopher P.
    Keidel, Victoria
    Szurmant, Hendrik
    JOURNAL OF MOLECULAR BIOLOGY, 2016, 428 (19) : 3752 - 3775
  • [34] Inhibitors targeting two-component signal transduction
    Watanabe, Takafumi
    Okada, Ario
    Gotoh, Yasuhiro
    Utsumi, Ryutaro
    BACTERIAL SIGNAL TRANSDUCTION: NETWORKS AND DRUG TARGETS, 2008, 631 : 229 - 236
  • [35] Two-Component Systems and Their Co-Option for Eukaryotic Signal Transduction
    Schaller, G. Eric
    Shiu, Shin-Han
    Armitage, Judith P.
    CURRENT BIOLOGY, 2011, 21 (09) : R320 - R330
  • [36] Structural Characteristics and Signal Transduction Mechanisms of Bacterial Two-component Systems
    Luo, Bo-Yu
    Teng, Yue
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2025, 52 (03) : 640 - 653
  • [37] Two-Component Signal Transduction Systems in the Human Pathogen Streptococcus agalactiae
    Thomas, Lamar
    Cook, Laura
    INFECTION AND IMMUNITY, 2020, 88 (07)
  • [38] An intersection of the cAMP/PKA and two-component signal transduction systems in Dictyostelium
    Thomason, PA
    Traynor, D
    Cavet, G
    Chang, WT
    Harwood, AJ
    Kay, RR
    EMBO JOURNAL, 1998, 17 (10): : 2838 - 2845
  • [39] Analysis of two-component signal transduction systems of Lactobacillus acidophilus group
    Cui, Yan-Hua
    Ma, Ying
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2009, 41 (04): : 104 - 110
  • [40] Two-component and phosphorelay signal-transduction systems as therapeutic targets
    Stephenson, K
    Hoch, JA
    CURRENT OPINION IN PHARMACOLOGY, 2002, 2 (05) : 507 - 512