NO-BOUNDARY WAVE-FUNCTION IN A HIGHER-DIMENSIONAL SPHERICALLY SYMMETRICAL MICROSUPERSPACE MODEL

被引:2
|
作者
CHAKRABORTY, S
机构
关键词
D O I
10.1142/S0217732392000628
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The wave function following the Hartle-Hawking (HH) no-boundary proposal is evaluated in five-dimensional space-time with topology of the four space S1 x S3, generalizing the concept of microsuperspace. The functional integral in the expression for the wave function is simplified to an ordinary integration of one variable and is evaluated by the method of steepest-descent.
引用
下载
收藏
页码:653 / 658
页数:6
相关论文
共 50 条
  • [31] Boundary concentration phenomena for the higher-dimensional Keller–Segel system
    Oscar Agudelo
    Angela Pistoia
    Calculus of Variations and Partial Differential Equations, 2016, 55
  • [32] On the Morse index of higher-dimensional free boundary minimal catenoids
    Smith, Graham
    Stern, Ari
    Tran, Hung
    Zhou, Detang
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (06)
  • [33] On the Morse index of higher-dimensional free boundary minimal catenoids
    Graham Smith
    Ari Stern
    Hung Tran
    Detang Zhou
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [34] A HIGHER-DIMENSIONAL GENERALIZATION OF THE GROSS ZETA-FUNCTION
    KAPRANOV, M
    JOURNAL OF NUMBER THEORY, 1995, 50 (02) : 363 - 375
  • [35] INTERIOR SOLUTIONS IN STATIC SPHERICAL SYMMETRICAL HIGHER-DIMENSIONAL SPACE-TIME
    SHEN, YG
    CHINESE SCIENCE BULLETIN, 1990, 35 (18): : 1533 - 1538
  • [36] Invariant sets and exact solutions to higher-dimensional wave equations
    Qu Gai-Zhu
    Zhang Shun-Li
    Zhu Chun-Rong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 49 (05) : 1119 - 1124
  • [37] Invariant Sets and Exact Solutions to Higher-Dimensional Wave Equations
    QU Gai-Zhu~1 ZHANG Shun-Li~(1
    Communications in Theoretical Physics, 2008, 49 (05) : 1119 - 1124
  • [38] Wave-function model for the CP violation in mesons
    Fathi, S. M. Saberi
    Courbage, M.
    Durt, T.
    CHAOS, 2017, 27 (10)
  • [39] STUDY OF THE ACCURACY OF THE GUTZWILLER WAVE-FUNCTION FOR THE 2-DIMENSIONAL HUBBARD-MODEL
    HONG, XQ
    HIRSCH, JE
    PHYSICAL REVIEW B, 1990, 41 (07): : 4410 - 4415
  • [40] Bayesian model updating of higher-dimensional dynamic systems
    Cheung, S. H.
    Beck, J. L.
    APPLICATIONS OF STATISICS AND PROBABILITY IN CIVIL ENGINEERING, 2007, : 593 - 594