BOUNDED DISCREPANCY SETS

被引:0
|
作者
TIJDEMAN, R [1 ]
VOORHOEVE, M [1 ]
机构
[1] MATH INST,POB 9512,NL-2300 RA LEIDEN,NETHERLANDS
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:375 / 389
页数:15
相关论文
共 50 条
  • [21] OPERATORS TAKING NORM-BOUNDED SETS INTO ORDER-BOUNDED SETS
    DIESTEL, J
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (07): : 1059 - &
  • [22] DISCREPANCY AND APPROXIMATIONS FOR BOUNDED VC-DIMENSION
    MATOUSEK, J
    WELZL, E
    WERNISCH, L
    COMBINATORICA, 1993, 13 (04) : 455 - 466
  • [23] When is a family of sets a family of bounded sets?
    Beer, G
    AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (07): : 609 - 614
  • [24] CONSTRUCTIVE DISCREPANCY MINIMIZATION FOR CONVEX SETS
    Rothvoss, Thomas
    SIAM JOURNAL ON COMPUTING, 2017, 46 (01) : 224 - 234
  • [25] Discrepancy of point sequences on fractal sets
    Albrecher, H
    Matousek, J
    Tichy, RF
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 56 (3-4): : 233 - 249
  • [26] LOW-DISCREPANCY POINT SETS
    NIEDERREITER, H
    MONATSHEFTE FUR MATHEMATIK, 1986, 102 (02): : 155 - 167
  • [27] Fibonacci sets and symmetrization in discrepancy theory
    Bilyk, Dmitriy
    Temlyakov, V. N.
    Yu, Rui
    JOURNAL OF COMPLEXITY, 2012, 28 (01) : 18 - 36
  • [28] Constructive discrepancy minimization for convex sets
    Rothvoss, Thomas
    2014 55TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2014), 2014, : 140 - 145
  • [29] Bounded Verification with On-the-Fly Discrepancy Computation
    Fan, Chuchu
    Mitra, Sayan
    AUTOMATED TECHNOLOGY FOR VERIFICATION AND ANALYSIS, ATVA 2015, 2015, 9364 : 446 - 463
  • [30] POINT SETS AND SEQUENCES WITH SMALL DISCREPANCY
    NIEDERREITER, H
    MONATSHEFTE FUR MATHEMATIK, 1987, 104 (04): : 273 - 337