Polynomial Formula for Sums of Powers of Integers

被引:0
|
作者
Athreya, K. B. [1 ]
Kothari, S. [2 ]
机构
[1] Iowa State Univ, Math & Stat, Ames, IA USA
[2] Iowa State Univ, Dept Elect Engn, Ames, IA USA
来源
关键词
Sums of powers; integers; polynomial formula;
D O I
10.1007/s12045-015-0229-9
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
In this article, it is shown that for any positive integer k >= 1, there exist unique real numbers a(kr), r = 1, 2, ..., (k + 1), such that for any integer n >= 1 S-k,S-n equivalent to Sigma(n)(j=1) j(k) = Sigma((k+1))(r=1) a(kr)n(r). The numbers a(kr) are computed explicitly for r = k + 1, k, k - 1, ..., (k - 10). This fully determines the polynomials for k = 1, 2, ..., 12. The cases k = 1, 2, 3 are well known and available in high school algebra books.
引用
收藏
页码:726 / 743
页数:18
相关论文
共 50 条