EXPECTED NUMBER OF EXCURSIONS ABOVE CURVED BOUNDARY BY A RANDOM-WALK

被引:1
|
作者
KLEBANER, FC [1 ]
机构
[1] UNIV MELBOURNE,DEPT STAT,PARKVILLE,VIC 3052,AUSTRALIA
关键词
D O I
10.1017/S0004972700018013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An asymptotic relation for the expected number of excursions above a boundary g(n) by a random walk Sn, n = 1,2, ‥, N is given in terms of an integral involving g. An integral test is given to determine whether the total excursion time has finite expectation. If some moment assumptions hold then the expectation of the total excursions is finite if and only if [formula omitted]. © 1990, Australian Mathematical Society. All rights reserved.
引用
收藏
页码:207 / 213
页数:7
相关论文
共 50 条
  • [41] RANDOM-WALK MONITORING
    SMITH, WE
    HALSEY, RM
    AMERICAN PSYCHOLOGIST, 1960, 15 (07) : 449 - 450
  • [42] UPCROSSINGS OF THE RANDOM-WALK
    JOHNSON, DP
    ACTA MATHEMATICA HUNGARICA, 1991, 57 (1-2) : 3 - 5
  • [43] THE DETERMINISTIC RANDOM-WALK
    FARMER, D
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1981, 26 (03): : 242 - 242
  • [44] A RANDOM-WALK IN ARITHMETIC
    CHAITIN, G
    NEW SCIENTIST, 1990, 125 (1709) : 44 - 46
  • [45] REINFORCED RANDOM-WALK
    DAVIS, B
    PROBABILITY THEORY AND RELATED FIELDS, 1990, 84 (02) : 203 - 229
  • [46] THE PEARSON RANDOM-WALK
    KIEFER, JE
    WEISS, GH
    AIP CONFERENCE PROCEEDINGS, 1984, (109) : 11 - 32
  • [47] Random-walk enzymes
    Mak, Chi H.
    Phuong Pham
    Afif, Samir A.
    Goodman, Myron F.
    PHYSICAL REVIEW E, 2015, 92 (03):
  • [48] ON THE AVERAGE OF A RANDOM-WALK
    GRILL, K
    STATISTICS & PROBABILITY LETTERS, 1988, 6 (05) : 357 - 361
  • [49] Long excursions of a random walk
    Csáki, E
    Révész, P
    Shi, Z
    JOURNAL OF THEORETICAL PROBABILITY, 2001, 14 (03) : 821 - 844
  • [50] Long Excursions of a Random Walk
    Endre Csáki
    Pál Révész
    Zhan Shi
    Journal of Theoretical Probability, 2001, 14 : 821 - 844