EXPECTED NUMBER OF EXCURSIONS ABOVE CURVED BOUNDARY BY A RANDOM-WALK

被引:1
|
作者
KLEBANER, FC [1 ]
机构
[1] UNIV MELBOURNE,DEPT STAT,PARKVILLE,VIC 3052,AUSTRALIA
关键词
D O I
10.1017/S0004972700018013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An asymptotic relation for the expected number of excursions above a boundary g(n) by a random walk Sn, n = 1,2, ‥, N is given in terms of an integral involving g. An integral test is given to determine whether the total excursion time has finite expectation. If some moment assumptions hold then the expectation of the total excursions is finite if and only if [formula omitted]. © 1990, Australian Mathematical Society. All rights reserved.
引用
收藏
页码:207 / 213
页数:7
相关论文
共 50 条