LONG-RANGE ANISOTROPIC ANTIFERROMAGNETIC INTERACTIONS IN ONE-DIMENSIONAL CLASSICAL LATTICE-SPIN MODELS

被引:1
|
作者
ROMANO, S
机构
[1] Dipartimento di Fisica A. Volta, Università di Pavia, I-27100 Pavia
来源
PHYSICAL REVIEW B | 1993年 / 47卷 / 22期
关键词
D O I
10.1103/PhysRevB.47.15068
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present paper considers a classical system, consisting of n-component unit vectors (n = 2,3), associated with a one-dimensional lattice {u(k)\k is-an-element-of Z}, and interacting via a translationally invariant pair potential of the long-range, antiferromagnetic and anisotropic form W = W(jk) = + epsilon \j-k\-2(au(j,n)u(k,n)+b SIGMA(lambda<n u(j,lambda)u(k,lambda). Here epsilon is a positive quantity setting energy and temperature scales (i.e., T* = k(B)T/epsilon), a and b are positive numbers, and u(k,lambda) denotes the Cartesian components of the unit vectors. Available rigorous results exclude the existence of order at finite temperature in the isotropic case a = b, whereas spin-wave arguments imply its existence in the anisotropic one a > b greater-than-or-equal-to 0, for which no such theorems axe known; we report here a simulation study of the extremely anisotropic case a = 1, b = 0. Results obtained over a range of sample sizes suggested the existence of antiferromagnetic order in the thermodynamic limit at finite temperature; we have estimated the transition temperatures to be T(c)* = 0.19 +/- 0.01 (n = 2) and T(c)* = 0.15 +/- 0.01 (n = 3).
引用
收藏
页码:15068 / 15072
页数:5
相关论文
共 50 条
  • [31] One-dimensional infinite-component vector spin glass with long-range interactions
    Beyer, Frank
    Weigel, Martin
    Moore, M. A.
    PHYSICAL REVIEW B, 2012, 86 (01)
  • [32] UNIVERSALITY FOR 3 DIMENSIONAL LATTICE MODELS WITH LONG-RANGE INTERACTIONS
    CONIGLIO, A
    PHYSICS LETTERS A, 1972, A 38 (02) : 105 - &
  • [33] Long-range ferromagnetism in one-dimensional monatomic spin chains
    Li, Ying
    Liu, Bang-Gui
    PHYSICAL REVIEW B, 2006, 73 (17):
  • [34] ABSENCE OF LONG-RANGE ORDER IN ONE-DIMENSIONAL SPIN SYSTEMS
    ROGERS, JB
    THOMPSON, CJ
    JOURNAL OF STATISTICAL PHYSICS, 1981, 25 (04) : 669 - 678
  • [35] Spin waves in antiferromagnetic spin chains with long-range interactions
    Yusuf, E
    Joshi, A
    Yang, K
    PHYSICAL REVIEW B, 2004, 69 (14) : 144412 - 1
  • [36] PHASE ORDERING IN ONE-DIMENSIONAL SYSTEMS WITH LONG-RANGE INTERACTIONS
    LEE, BP
    CARDY, JL
    PHYSICAL REVIEW E, 1993, 48 (04) : 2452 - 2465
  • [38] Dynamical phase transitions in quantum spin models with antiferromagnetic long-range interactions
    Halimeh, Jad C.
    Van Damme, Maarten
    Guo, Lingzhen
    Lang, Johannes
    Hauke, Philipp
    PHYSICAL REVIEW B, 2021, 104 (11)
  • [39] Kinetics of the one-dimensional voter model with long-range interactions
    Corberi, Federico
    Castellano, Claudio
    JOURNAL OF PHYSICS-COMPLEXITY, 2024, 5 (02):
  • [40] ANALYTICITY FOR ONE-DIMENSIONAL SYSTEMS WITH LONG-RANGE SUPERSTABLE INTERACTIONS
    CAMPANINO, M
    CAPOCACCIA, D
    OLIVIERI, E
    JOURNAL OF STATISTICAL PHYSICS, 1983, 33 (02) : 437 - 476