SPECTRAL-DIFFERENCE METHOD FOR BAROCLINIC PRIMITIVE EQUATION AND ITS ERROR ESTIMATION

被引:0
|
作者
GUO, BY
机构
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:696 / 713
页数:18
相关论文
共 50 条
  • [31] SYNTHESIS OF A PRIMITIVE ERROR FUNCTION MADE DIRECTLY FROM ITS DIFFERENCE MEASUREMENTS RESULTS
    VERKHOTU.BY
    [J]. MEASUREMENT TECHNIQUES-USSR, 1965, (12): : 1046 - &
  • [32] ERROR ESTIMATION OF THE RELAXATION FINITE DIFFERENCE SCHEME FOR THE NONLINEAR SCHRO"\DINGER EQUATION
    Zouraris, Georgios E.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (01) : 365 - 397
  • [33] ERROR ESTIMATES OF A REGULARIZED FINITE DIFFERENCE METHOD FOR THE LOGARITHMIC SCHRODINGER EQUATION
    Bat, Weizhu
    Carles, Remi
    Su, Chunmei
    Tang, Qinglin
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (02) : 657 - 680
  • [34] Stability of a Linear Difference Equation and Estimation of its Fundamental Solution
    Kulikov, A. Yu.
    Malygina, V. V.
    [J]. RUSSIAN MATHEMATICS, 2011, 55 (12) : 23 - 33
  • [35] MODIFIED EQUATION ERROR METHOD FOR AIRCRAFT PARAMETER-ESTIMATION
    RAMAMOORTHY, RP
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1979, 10 (07) : 817 - 826
  • [36] AN ERROR ESTIMATION OF A SOLUTION USING THE INTEGRAL-EQUATION METHOD
    TAKEDA, T
    KUWAHARA, T
    MIYATA, T
    IGARASHI, M
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1990, 26 (02) : 719 - 722
  • [37] Error Estimation of a Class of Stable Spectral Approximation to the Cahn-Hilliard Equation
    He, Li-ping
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2009, 41 (03) : 461 - 482
  • [38] Error Estimation of a Class of Stable Spectral Approximation to the Cahn-Hilliard Equation
    Li-ping He
    [J]. Journal of Scientific Computing, 2009, 41 : 461 - 482
  • [39] An arbitrary high-order Spectral Difference method for the induction equation
    Veiga, Maria Han
    Velasco-Romero, David A.
    Wenger, Quentin
    Teyssier, Romain
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 438
  • [40] An arbitrary high-order Spectral Difference method for the induction equation
    Han Veiga, Maria
    Velasco-Romero, David A.
    Wenger, Quentin
    Teyssier, Romain
    [J]. Journal of Computational Physics, 2021, 438