SOME APPLICATIONS OF A THEOREM OF CHEVALLEY

被引:0
|
作者
CARLITZ, L
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:457 / 458
页数:2
相关论文
共 50 条
  • [11] On Chevalley Restriction Theorem for Semi-reductive Algebraic Groups and Its Applications
    Ou, Ke
    Shu, Bin
    Yao, Yu Feng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (08) : 1421 - 1435
  • [12] On Chevalley Restriction Theorem for Semi-reductive Algebraic Groups and Its Applications
    Ke OU
    Bin SHU
    Yu Feng YAO
    Acta Mathematica Sinica,English Series, 2022, 38 (08) : 1421 - 1435
  • [13] On Chevalley Restriction Theorem for Semi-reductive Algebraic Groups and Its Applications
    Ke Ou
    Bin Shu
    Yu Feng Yao
    Acta Mathematica Sinica, English Series, 2022, 38 : 1421 - 1435
  • [14] Growth in Chevalley groups relatively to parabolic subgroups and some applications
    Shkredov, Ilya D.
    REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (06) : 1945 - 1973
  • [15] Chevalley's theorem with restricted variables
    Brink, David
    COMBINATORICA, 2011, 31 (01) : 127 - 130
  • [16] Chevalley restriction theorem for the cyclic quiver
    Gan, Wee Liang
    MANUSCRIPTA MATHEMATICA, 2006, 121 (01) : 131 - 134
  • [17] Chevalley's theorem in class Cr
    Barbancon, Gerard P.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 : 743 - 758
  • [18] Chevalley restriction theorem for the cyclic quiver
    Wee Liang Gan
    manuscripta mathematica, 2006, 121 : 131 - 134
  • [19] Around the Chevalley-Weil theorem
    Corvaja, Pietro
    Turchet, Amos
    Zannier, Umberto
    ENSEIGNEMENT MATHEMATIQUE, 2022, 68 (1-2): : 217 - 235
  • [20] Chevalley’s theorem with restricted variables
    David Brink
    Combinatorica, 2011, 31 : 127 - 130