COMPUTING EQUILIBRIA OF N-PERSON GAMES

被引:95
|
作者
WILSON, R
机构
关键词
D O I
10.1137/0121011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
下载
收藏
页码:80 / &
相关论文
共 50 条
  • [41] Finding the Nash equilibria of n-person noncooperative games via solving the system of equations
    Li, Huimin
    Xiang, Shuwen
    Xia, Shunyou
    Huang, Shiguo
    AIMS MATHEMATICS, 2023, 8 (06): : 13984 - 14007
  • [42] On the strongly essential components of Nash equilibria of infinite n-person games with quasiconcave payoffs
    Xiang, Shu-Wen
    Liu, Gui-dong
    Zhou, Yong-hui
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) : E2639 - E2647
  • [43] ROBUST NASH EQUILIBRIA IN N-PERSON NON-COOPERATIVE GAMES: UNIQUENESS AND REFORMULATION
    Nishimura, Ryoichi
    Hayashi, Shunsuke
    Fukushima, Masao
    PACIFIC JOURNAL OF OPTIMIZATION, 2009, 5 (02): : 237 - 259
  • [44] Bandit Learning in Concave N-Person Games
    Bravo, Mario
    Leslie, David
    Mertikopoulos, Panayotis
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [45] CHARACTERIZATION OF NUCLEOLUS FOR A CLASS OF N-PERSON GAMES
    OWEN, G
    NAVAL RESEARCH LOGISTICS, 1977, 24 (03) : 463 - 472
  • [46] Leadership and credibility in N-person coordination games
    Wilson, RK
    Rhodes, CM
    JOURNAL OF CONFLICT RESOLUTION, 1997, 41 (06) : 767 - 791
  • [47] ON EQUILIBRIUM POINTS OF DIAGONAL N-PERSON GAMES
    MARCHI, E
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1990, 64 (01) : 119 - 125
  • [48] International organisation as coordination in N-person games
    Lane, JE
    Maeland, R
    POLITICAL STUDIES, 2006, 54 (01) : 185 - 215
  • [49] EQUILIBRIUM POINTS IN SPECIAL N-PERSON GAMES
    QUINTAS, LG
    MARCHI, E
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1990, 67 (01) : 193 - 204
  • [50] STABILITY OF THE GRADIENT PROCESS IN N-PERSON GAMES
    ARROW, KJ
    HURWICZ, L
    JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1960, 8 (02): : 280 - 294