Progress in modeling of semiconductor structures with heterojunctions

被引:1
|
作者
Costa, Timothy [1 ]
Foster, David H. [2 ]
Peszynska, Malgorzata [1 ]
机构
[1] Oregon State Univ, Dept Math, Corvallis, OR 97331 USA
[2] Oregon State Univ, Dept Phys, Corvallis, OR 97331 USA
基金
美国国家科学基金会;
关键词
Semiconductor Modeling; Solar Cells; Materials Science; Multiscale Modeling; Density Functional Theory; Drift-Diffusion Equations; Domain Decomposition; Uncertainty Propagation;
D O I
10.1166/jcsmd.2015.1066
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper we extend our previous work on a computational model for heterojunctions in semiconductors which can be used, e.g., for modeling higher efficiency solar cells. The problem of charge transport in a semiconductor structure with a heterojunction is described by a multiscale model consisting of the drift-diffusion equations posed on subdomains corresponding to distinct semiconductor materials connected by transmission conditions across the heterojunction interface. The interface conditions arise from approximating the heterojunction region by a lower-dimensional manifold and consist of a non-homogeneous jump in the electrostatic potential and Robin-like interface conditions for carrier transport. The data for the interface conditions are calculated by a Density Functional Theory model over a few atomic layers in the heterojunction region. The model lends itself naturally to domain decomposition, and we extend our previous algorithms as well as provide new analysis. We also provide a study of the propagation of uncertainty in heterojunction data through the continuum model, and present work on the transient model. The paper is illustrated with numerical simulations of several heterojunction structures.
引用
收藏
页码:66 / 86
页数:21
相关论文
共 50 条
  • [31] Modeling nonlinear and chaotic dynamics in semiconductor device structures
    Scholl, E
    VLSI DESIGN, 1998, 6 (1-4) : 321 - 329
  • [32] Heat transfer modeling in metal-semiconductor structures
    Khlyap, G
    Sydorchuk, P
    ASDAM '02, CONFERENCE PROCEEDINGS, 2002, : 219 - 222
  • [33] Microscopic modeling of radiative losses in semiconductor laser structures
    Kuznetsova, I
    Schlichenmaier, C
    Thränhardt, A
    Koch, SW
    Hader, J
    Moloney, JV
    NUSOD '05: Proceedings of the 5th International Conference on Numerical Simulations of Optoelectronic Devices, 2004, : 71 - 72
  • [34] MATERIALS RESEARCH FRONTIERS IN SEMICONDUCTOR HETEROJUNCTIONS
    BAUER, RS
    THIN SOLID FILMS, 1983, 104 (3-4) : 277 - 278
  • [35] Incomplete depletion approximation in semiconductor heterojunctions
    Karafyllidis, Yiannis
    Hagouel, Paul
    Kriezis, Epaminondas
    Microelectronics Journal, 1992, 23 (08) : 633 - 639
  • [36] Rational Design of Semiconductor Heterojunctions for Photocatalysis
    Di Liberto, Giovanni
    Cipriano, Luis A.
    Tosoni, Sergio
    Pacchioni, Gianfranco
    CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (53) : 13306 - 13317
  • [37] Excitons and charges at organic semiconductor heterojunctions
    Dr. Chen
    Friend
    Gust
    Dr. Clegg
    Durrant
    Rumbles
    Guldi
    Dr. Sacilotti
    Peter
    Dr. Barroso
    Dr. Takashi
    Burrows
    Dr. Faunce
    Campagna
    Dr. Fukuzumi
    Ishitani
    FARADAY DISCUSSIONS, 2012, 155 : 349 - 356
  • [38] Study of interfaces in organic semiconductor heterojunctions
    Maheshwari, P.
    Dutta, D.
    Sudarshan, K.
    Sharma, S. K.
    Samanta, S.
    Singh, A.
    Aswal, D. K.
    Pujari, P. K.
    12TH INTERNATIONAL WORKSHOP ON SLOW POSITRON BEAM TECHNIQUES (SLOPOS12), 2011, 262
  • [39] N-N SEMICONDUCTOR HETEROJUNCTIONS
    OLDHAM, WG
    MILNES, AG
    SOLID-STATE ELECTRONICS, 1963, 6 (02) : 121 - 132
  • [40] CONSTRUCTING BAND DIAGRAMS OF SEMICONDUCTOR HETEROJUNCTIONS
    LEIBOVITCH, M
    KRONIK, L
    FEFER, E
    KOROBOV, V
    SHAPIRA, Y
    APPLIED PHYSICS LETTERS, 1995, 66 (04) : 457 - 459