Particle wave functions as solutions of the D'Alembert equation

被引:0
|
作者
Kudusov, A. S.
机构
来源
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work is devoted to research of methodological aspects of the quantum theory. Namely, the question about the main principles of a correlation between the common dynamical quantities of elementary particles with the corresponding wave parameters is investigated in the paper. It can be shown that the particle rest mass can be regarded as some structural wave parameter. In the present work the possibility of generalization this approach on systems in external field is investigated. Also the implementation of uncertainty principle to the model is verified.
引用
收藏
页码:3 / 8
页数:6
相关论文
共 50 条
  • [41] On the superstability of generalized d'Alembert harmonic functions
    EL-Fassi, Iz-iddine
    ANNALES UNIVERSITATIS PAEDAGOGICAE CRACOVIENSIS-STUDIA MATHEMATICA, 2016, 15 : 5 - 13
  • [42] Superstability of approximate d'Alembert harmonic functions
    Kim, Hark-Mahn
    Kim, Gwang Hui
    Han, Mi Hyun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [43] Superstability of approximate d'Alembert harmonic functions
    Hark-Mahn Kim
    Gwang Hui Kim
    Mi Hyun Han
    Journal of Inequalities and Applications, 2011
  • [44] Scattering problems for the wave equation in 1D: D'Alembert-type representations and a reconstruction method
    Kalimeris, Konstantinos
    Mindrinos, Leonidas
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 5 (02):
  • [45] A geometric approach to a noncommutative generalized d'Alembert equation
    Prástaro, A
    Rassias, TM
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (07): : 545 - 550
  • [46] D'Alembert's functional equation on topological groups
    Davison, Tom M. K.
    AEQUATIONES MATHEMATICAE, 2008, 76 (1-2) : 33 - 53
  • [47] A VARIANT OF D'ALEMBERT'S MATRIX FUNCTIONAL EQUATION
    Aissi, Youssef
    Zeglami, Driss
    Ayoubi, Mohamed
    ANNALES MATHEMATICAE SILESIANAE, 2021, 35 (01) : 21 - 43
  • [48] D’Alembert’s functional equation on topological groups
    Tom M. K. Davison
    Aequationes mathematicae, 2008, 76 : 33 - 53
  • [49] D'ALEMBERT'S FUNCTIONAL EQUATION ON COMPACT GROUPS
    Szekelyhidi, Laszlo
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2007, 1 (02): : 221 - 226
  • [50] Conditionally invariant q-d'Alembert equation
    Dobrev, VK
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 16 - 18