FUNCTIONAL-EQUATION

被引:1
|
作者
SERRE, D
机构
关键词
D O I
10.1016/0893-9659(93)90095-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the functional equation f(i)(x) = SIGMA(j) a(ij)f(tau(j)x) + h(i)(x) where a(ij) and tau(j) are fixed constants, 0 < tau(j) < 1, and h(i) is a given function. The independant real variable x runs either on ]0, x(0)[ or on ]0, +infinity[. We give necessary and sufficient conditions of algebraic type in order that the linear mapping h bar arrow pointing right f be well-defined and continuous from a Sobolev-type space (one may think to L2(dx/x)) into itself. A former analysis within the context of differentiable functions is due to Le Floch and Li Ta Tsien [1].
引用
收藏
页码:31 / 33
页数:3
相关论文
共 50 条