SYSTEMATIC DERIVATION OF PERCOLATION THRESHOLDS IN CONTINUUM-SYSTEMS

被引:46
|
作者
ALON, U
DRORY, A
BALBERG, I
机构
[1] Racah Institute of Physics, Hebrew University, Jerusalem
来源
PHYSICAL REVIEW A | 1990年 / 42卷 / 08期
关键词
D O I
10.1103/PhysRevA.42.4634
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Analytic expressions for the critical percolation density in the continuum are derived using the direct-connectedness expansion method. Demonstrating a systematic application of this method for systems of permeable cubes or spheres, it is concluded that the present expansion is quite practical for the derivation of critical parameters of continuum systems. Correspondingly we also utilize the method to find the percolation threshold of the so-far unstudied continuum systems of oriented hypercubes. The results obtained are in excellent agreement with Monte Carlo simulations. © 1990 The American Physical Society.
引用
下载
收藏
页码:4634 / 4638
页数:5
相关论文
共 50 条
  • [21] From continuum mechanics to SPH particle systems and back: Systematic derivation and convergence
    Evers, Joep H. M.
    Zisis, Iason A.
    van der Linden, Bas J.
    Duong, Manh Hong
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2018, 98 (01): : 106 - 133
  • [22] A percolation equation for modeling experimental results for continuum percolation systems
    McLachlan, DS
    Chiteme, C
    Heiss, WD
    Wu, JJ
    ELECTRICALLY BASED MICROSTRUCTURAL CHARACTERIZATION III, 2002, 699 : 45 - 56
  • [23] Invariant percolation properties in some continuum systems
    Alvarez-Alvarez, A.
    Balberg, I
    Fernandez-Alvarez, J. P.
    PHYSICAL REVIEW B, 2021, 104 (18)
  • [24] Percolation exponents and thresholds obtained from the nearly ideal continuum percolation system graphite-boron nitride
    Wu, JJ
    McLachlan, DS
    PHYSICAL REVIEW B, 1997, 56 (03): : 1236 - 1248
  • [25] ON CONTINUUM PERCOLATION
    HALL, P
    ANNALS OF PROBABILITY, 1985, 13 (04): : 1250 - 1266
  • [26] Possible manifestation of nonuniversality in some continuum percolation systems
    Myroshnychenko, V.
    Brosseau, C.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (09)
  • [27] Computability of percolation thresholds
    Haggstrom, Olle
    IN AND OUT OF EQUILIBRIUM 2, 2008, 60 : 321 - 329
  • [28] RANDOM-ADDING DETERMINATION OF PERCOLATION THRESHOLDS IN INTERACTING SYSTEMS
    DRORY, A
    BALBERG, I
    BERKOWITZ, B
    PHYSICAL REVIEW E, 1994, 49 (02): : R949 - R952
  • [29] Percolation Thresholds for Diffusing Particles of Nonzero Radius: Circular Obstacles in the Two-dimensional Continuum
    Saxton, Michael J.
    BIOPHYSICAL JOURNAL, 2009, 96 (03) : 152A - 152A
  • [30] Continuum percolation of two-dimensional adaptive dynamics systems
    Liu, Chang
    Dong, Jia-Qi
    Yu, Lian-Chun
    Huang, Liang
    PHYSICAL REVIEW E, 2024, 110 (02)