HYPERBOLIC COMPLEX YANG-BAXTER EQUATION AND HYPERBOLIC COMPLEX MULTIPARAMETRIC QUANTUM GROUPS

被引:0
|
作者
WU, YB
ZHONG, ZZ
机构
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The hyperbolic complex Yang-Baxter equation is equivalent to a system consisting of two ordinary Yang-Baxter equations, and a hyperbolic complex quantum group is isomorphic to a direct product of two quantum groups. As a concrete example, the quantum group GL(H)(Gamma; xi(ij)) with hyperbolic complex multiparameter is isomorphic to a direct product of two quantum groups GL(X; q(ij)) and GL(Y; r(ij)) with ordinary multiparameter.
引用
收藏
页码:2171 / 2177
页数:7
相关论文
共 50 条
  • [31] On the quiver-theoretical quantum Yang-Baxter equation
    Andruskiewitsch, Nicolas
    SELECTA MATHEMATICA-NEW SERIES, 2005, 11 (02): : 203 - 246
  • [32] QUANTUM ENTANGLEMENT, SUPERSYMMETRY, AND THE GENERALIZED YANG-BAXTER EQUATION
    Padmanabhan, Pramod
    Sugino, Fumihiko
    Trancanelli, Diego
    QUANTUM INFORMATION & COMPUTATION, 2020, 20 (1-2) : 37 - 64
  • [33] Quantum comodule approach the solution of the quantum Yang-Baxter equation
    Li, LB
    Li, SZ
    ACTA MATHEMATICA SCIENTIA, 2000, 20 (02) : 206 - 212
  • [34] SPECTRA OF QUANTUM CHAINS WITHOUT THE YANG-BAXTER EQUATION
    PESCHEL, I
    RITTENBERG, V
    SCHULTZE, U
    NUCLEAR PHYSICS B, 1994, 430 (03) : 633 - 655
  • [35] Braces, radical rings, and the quantum Yang-Baxter equation
    Rump, Wolfgang
    JOURNAL OF ALGEBRA, 2007, 307 (01) : 153 - 170
  • [36] INVOLUTIVE YANG-BAXTER GROUPS
    Cedo, Ferran
    Jespers, Eric
    Del Rio, Angel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (05) : 2541 - 2558
  • [37] Dynamical Yang-Baxter Equation and Quantum Vector Bundles
    J. Donin
    A. Mudrov
    Communications in Mathematical Physics, 2005, 254 : 719 - 760
  • [38] Quantum entanglement, supersymmetry, and the generalized yang-baxter equation
    Padmanabhan, Pramod
    Sugino, Fumihiko
    Trancanelli, Diego
    Quantum Information and Computation, 2020, 1-2 (37-64): : 1 - 2
  • [39] The Yang-Baxter Equation, (Quantum) Computers and Unifying Theories
    Iordanescu, Radu
    Nichita, Florin F.
    Nichita, Ion M.
    AXIOMS, 2014, 3 (04): : 360 - 368
  • [40] INTRODUCTION TO THE YANG-BAXTER EQUATION
    JIMBO, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (15): : 3759 - 3777