QUANTUM EFFECTS IN THE BERTOTTI-ROBINSON SPACE-TIME

被引:2
|
作者
DENARDO, G [1 ]
SPALLUCCI, E [1 ]
机构
[1] IST NAZL FIS NUCL,TRIESTE,ITALY
关键词
D O I
10.1007/BF02737515
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:162 / 168
页数:7
相关论文
共 50 条
  • [21] Bertotti-Robinson thin-shell wormhole is physical but unstable
    Amirabi, Z.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (08):
  • [22] Bertotti-Robinson thin-shell wormhole is physical but unstable
    Z. Amirabi
    The European Physical Journal Plus, 131
  • [23] Bertotti-Robinson solutions in five-dimensional quadratic gravity
    Clement, Gerard
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (07)
  • [24] Causal structure and the geodesics in the hairy extension of the Bertotti-Robinson spacetime
    Memari, Vahideh
    Mazharimousavi, S. Habib
    PHYSICA SCRIPTA, 2023, 98 (07)
  • [25] Bertotti-Robinson and soliton string solutions of D=5 minimal supergravity
    Bouchareb, Adel
    Chen, Chiang-Mei
    Clement, Gerard
    Gal'tsov, Dmitri
    PHYSICAL REVIEW D, 2014, 90 (02):
  • [26] Nariai, Bertotti-Robinson, and anti-Nariai solutions in higher dimensions
    Cardoso, V
    Dias, OJC
    Lemos, JPS
    PHYSICAL REVIEW D, 2004, 70 (02): : 024002 - 1
  • [27] Generalized Bertotti-Robinson solution to the Einstein-Heisenberg-Euler theory
    Macías, A
    Lozano, E
    GRAVITATION AND COSMOLOGY, 2005, 758 : 222 - 230
  • [28] Complete classification of static Bertotti-Robinson spacetime and its physical significance
    Ali, F.
    Ali, M.
    Shah, Z.
    Iqbal, S.
    Alshehri, M. H.
    INDIAN JOURNAL OF PHYSICS, 2024, 98 (04) : 1545 - 1552
  • [29] Classical model of an elementary particle with a Bertotti-Robinson core and extremal black holes
    Zaslavskii, OB
    PHYSICAL REVIEW D, 2004, 70 (10): : 104017 - 1
  • [30] MAGNETIC GENERALIZATIONS OF THE REISSNER-NORDSTROM CLASS OF METRICS AND BERTOTTI-ROBINSON SOLUTIONS
    BRETON, N
    GARCIA, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1986, 91 (01): : 83 - 99