A COMPREHENSIVE, AUTOMATED APPROACH TO DETERMINING SEA-ICE THICKNESS FROM SAR DATA

被引:48
|
作者
HAVERKAMP, D
SOH, LK
TSATSOULIS, C
机构
[1] Center for Excellence in Computer Aided Systems Engineering, Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence
来源
基金
美国国家航空航天局;
关键词
D O I
10.1109/36.368223
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper documents an approach to sea ice classification through a combination of methods, both algorithmic and heuristic, The resulting system is a comprehensive technique, which uses dynamic local thresholding as a classification basis and then supplements that initial classification using heuristic geophysical knowledge organized in expert systems, The dynamic local thresholding method allows separation of the ice into thickness classes based on local intensity distributions, Because it utilizes the data within each image, it can adapt to varying ice thickness intensities to regional and seasonal charges and is not subject to limitations caused by using predefined parameters,
引用
收藏
页码:46 / 57
页数:12
相关论文
共 50 条
  • [21] Uncertainties in Antarctic sea-ice thickness retrieval from ICESat
    Kern, Stefan
    Spreen, Gunnar
    ANNALS OF GLACIOLOGY, 2015, 56 (69) : 107 - 119
  • [22] First-year level sea-ice thickness retrieval in Labrador Sea using C-band polarimetric SAR data
    Liu, Mei-Jie
    Dai, Yong-Shou
    Zhang, Jie
    Zhang, Xi
    Meng, Jun-Min
    Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of China University of Petroleum (Edition of Natural Science), 2014, 38 (03): : 186 - 192
  • [23] Evaluation of sea-ice thickness reanalysis data from the coupled ocean-sea-ice data assimilation system TOPAZ4
    Xiu, Yongwu
    Min, Chao
    Xie, Jiping
    Mu, Longjiang
    Han, Bo
    Yang, Qinghua
    JOURNAL OF GLACIOLOGY, 2021, 67 (262) : 353 - 365
  • [24] Evaluation of sea-ice thickness from four reanalyses in the Antarctic Weddell Sea
    Shi, Qian
    Yang, Qinghua
    Mu, Longjiang
    Wang, Jinfei
    Massonnet, Francois
    Mazloff, Matthew R.
    CRYOSPHERE, 2021, 15 (01): : 31 - 47
  • [25] SEC: Stochastic ensemble consensus approach to unsupervised SAR sea-ice segmentation
    Wong, Alexander
    Clausi, David A.
    Fieguth, Paul
    2009 CANADIAN CONFERENCE ON COMPUTER AND ROBOT VISION, 2009, : 299 - 305
  • [26] Contextual Classification of Sea-Ice Types Using Compact Polarimetric SAR Data
    Ghanbari, Mohsen
    Clausi, David A.
    Xu, Linlin
    Jiang, Mingzhe
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (10): : 7476 - 7491
  • [27] Sea-ice thickness variability in Storfjorden, Svalbard
    Hendricks, S.
    Gerland, S.
    Smedsrud, L. H.
    Haas, C.
    Pfaffhuber, A. A.
    Nilsen, F.
    ANNALS OF GLACIOLOGY, 2011, 52 (57) : 61 - 68
  • [28] A thickness and enthalpy distribution sea-ice model
    Zhang, JL
    Rothrock, D
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2001, 31 (10) : 2986 - 3001
  • [29] Sensitivity Study of Simulated Sea-Ice Concentrationand Thickness Using a Global Sea-Ice Model (CICE)
    Lee, Su-Bong
    Ahn, Joong-Bae
    ATMOSPHERE-KOREA, 2014, 24 (04): : 555 - 563
  • [30] Sea-ice thickness measurement based on the dispersion of ice swell
    Marsan, D. (david.marsan@univ-savoie.fr), 1600, Acoustical Society of America (131):