REACTION-DIFFUSION FRONTS IN PERIODICALLY LAYERED MEDIA

被引:34
|
作者
PAPANICOLAOU, G
XUE, X
机构
[1] Courant Institute of Mathematical Sciences, New York
关键词
REACTION-DIFFUSION EQUATIONS; HOMOGENIZATION; TRAVELING WAVES;
D O I
10.1007/BF01029991
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compute the effective wavefront speeds of reaction-diffusion equations in periodically layered media with coefficients that have small-amplitude oscillations around a uniform mean state. We compare them with the corresponding wavefront speeds in the uniform state. We analyze a one-dimensional model where wave propagation is along the layering direction of the medium and a two-dimensional shear flow model where wave propagation is othogonal to the layering direction. We find that the effective wave speed is smaller in the one-dimensional model and is larger in the two-dimensional model for both bistable cubic and quadratic nonlinearities of the Kolmogorov-Petrovskii-Piskunov form. We derive approximate expressions for the wave speeds in the bistable case.
引用
收藏
页码:915 / 931
页数:17
相关论文
共 50 条
  • [21] Dynamical features of reaction-diffusion fronts in fractals
    Méndez, Vicenç
    Campos, Daniel
    Fort, Joaquim
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 69 (1 2): : 166131 - 166137
  • [22] Fractal dimension of reaction-diffusion wave fronts
    Lemarchand, A
    Nainville, I
    Mareschal, M
    EUROPHYSICS LETTERS, 1996, 36 (03): : 227 - 231
  • [23] Time-delayed reaction-diffusion fronts
    Isern, Neus
    Fort, Joaquim
    PHYSICAL REVIEW E, 2009, 80 (05):
  • [24] Speed of fronts of generalized reaction-diffusion equations
    Benguria, RD
    Depassier, MC
    PHYSICAL REVIEW E, 1998, 57 (06): : 6493 - 6496
  • [25] Reaction-diffusion fronts under stochastic advection
    Marti, AC
    Sagues, F
    Sancho, JM
    PHYSICAL REVIEW E, 1997, 56 (02): : 1729 - 1732
  • [26] Resonance in periodically inhibited reaction-diffusion systems
    Martinez, K
    Lin, AL
    Kharrazian, R
    Sailer, X
    Swinney, HL
    PHYSICA D-NONLINEAR PHENOMENA, 2002, 168 : 1 - 9
  • [28] 2-d modes of propagating reaction-diffusion fronts in condensed media.
    Solovyov, SE
    Ilyashenko, VM
    Pojman, JA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 211 : 81 - PHYS
  • [29] Speed of reaction-diffusion fronts in spatially heterogeneous media -: art. no. 041105
    Méndez, V
    Fort, J
    Rotstein, HG
    Fedotov, S
    PHYSICAL REVIEW E, 2003, 68 (04)
  • [30] The asymptotic speed of reaction fronts in active reaction-diffusion systems
    Demaerel, Thibaut
    Maes, Christian
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (24)