REACTION-DIFFUSION FRONTS IN PERIODICALLY LAYERED MEDIA

被引:34
|
作者
PAPANICOLAOU, G
XUE, X
机构
[1] Courant Institute of Mathematical Sciences, New York
关键词
REACTION-DIFFUSION EQUATIONS; HOMOGENIZATION; TRAVELING WAVES;
D O I
10.1007/BF01029991
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compute the effective wavefront speeds of reaction-diffusion equations in periodically layered media with coefficients that have small-amplitude oscillations around a uniform mean state. We compare them with the corresponding wavefront speeds in the uniform state. We analyze a one-dimensional model where wave propagation is along the layering direction of the medium and a two-dimensional shear flow model where wave propagation is othogonal to the layering direction. We find that the effective wave speed is smaller in the one-dimensional model and is larger in the two-dimensional model for both bistable cubic and quadratic nonlinearities of the Kolmogorov-Petrovskii-Piskunov form. We derive approximate expressions for the wave speeds in the bistable case.
引用
收藏
页码:915 / 931
页数:17
相关论文
共 50 条
  • [1] Reaction-diffusion fronts in media with spatially discrete sources
    Goroshin, Samuel
    Tang, Francois-David
    Higgins, Andrew J.
    PHYSICAL REVIEW E, 2011, 84 (02):
  • [2] Fingering instabilities of exothermic reaction-diffusion fronts in porous media
    Kalliadasis, S
    Yang, J
    De Wit, A
    PHYSICS OF FLUIDS, 2004, 16 (05) : 1395 - 1409
  • [3] STABILITY OF REACTION-DIFFUSION FRONTS
    ZHANG, ZQ
    FALLE, SAEG
    PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1994, 446 (1928): : 517 - 528
  • [4] QUENCHING AND PROPAGATION OF BISTABLE REACTION-DIFFUSION FRONTS IN MULTIDIMENSIONAL PERIODIC MEDIA
    XIN, JX
    ZHU, JY
    PHYSICA D, 1995, 81 (1-2): : 94 - 110
  • [5] Curved Fronts of Bistable Reaction-Diffusion Equations in Spatially Periodic Media
    Hongjun Guo
    Wan-Tong Li
    Rongsong Liu
    Zhi-Cheng Wang
    Archive for Rational Mechanics and Analysis, 2021, 242 : 1571 - 1627
  • [6] On the asymptotic limit of the effectiveness of reaction-diffusion equations in periodically structured media
    Diaz, J. I.
    Gomez-Castro, D.
    Podolskii, A. V.
    Shaposhnikova, T. A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1597 - 1613
  • [7] QUADRATIC AND CUBIC REACTION-DIFFUSION FRONTS
    SHOWALTER, K
    NONLINEAR SCIENCE TODAY, 1994, 4 (04): : 1 - 10
  • [8] Reaction-diffusion fronts and the butterfly set
    Cisternas, Jaime
    Rohe, Kevin
    Wehner, Stefan
    CHAOS, 2020, 30 (11)
  • [9] Propagating fronts in reaction-diffusion systems
    Vives, D
    Armero, J
    Marti, A
    Ramirez-Piscina, L
    Casademunt, J
    Sancho, JM
    Sagues, F
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1998, 23 (1-2) : 239 - 260
  • [10] Anomalous kinetics of reaction-diffusion fronts
    Taitelbaum, H
    Koza, Z
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1998, 77 (05): : 1389 - 1400