EARLY PRIMARY SUCCESSION ON THE VOLCANO MOUNT ST-HELENS

被引:98
|
作者
DELMORAL, R
WOOD, DM
机构
[1] Department of Botany, University of Washington, Seattle, Washington
[2] Department of Biological Sciences, California State University, Chico, California
关键词
BIOGEOGRAPHY; COMMUNITY STRUCTURE; COMPETITION; FACILITATION; LAHAR; PUMICE; SAFE-SITE; SPATIAL PATTERN;
D O I
10.2307/3236108
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Primary succession on Mount St. Helens, Washington State, USA, was studied using long-term observational and experimental methods. Distance from potential colonists is a major factor that impedes early primary succession. Sites near undisturbed vegetation remain low in plant cover, but species richness is comparable to intact vegetation. Sites over 500 m from sources of potential colonists have as many species, but mean species richness is much lower than in undisturbed plots. Cover is barely measurable after 11 growing seasons. Highly vagrant species of Asteraceae and Epilobium dominate isolated sites. Sites contiguous to undisturbed communities are dominated by large-seeded species. For a new surface to offer suitable conditions to invading plants, weathering, erosion and nutrient inputs must first occur. The earliest colonists are usually confined to specific microsites that offer some physical protection and enhanced resources. Primary succession on Mount St. Helens has been very slow because most habitats are isolated and physically stressful. Well-dispersed species lack the ability to establish until physical processes ameliorate the site. Species capable of establishment lack suitable dispersal abilities. Subsequently, facilitation may occur, for example through symbiotic nitrogen fixation, but these effects are thus far of only local importance. Lupinus lepidus usually facilitates colonization of other species only after it dies, leaving behind enriched soil lacking any competitors. Experiments and fine-scale observations suggest that successional sequences on Mount St. Helens are not mechanistically necessary. Rather, they result from local circumstances, landscape effects and chance.
引用
收藏
页码:223 / 234
页数:12
相关论文
共 50 条
  • [41] CRYSTALLINE SILICA IN MOUNT ST-HELENS ASH
    FARWELL, SO
    GAGE, DR
    ANALYTICAL CHEMISTRY, 1981, 53 (13) : A529 - &
  • [42] REGENERATING THE BLAST ZONE OF MOUNT ST-HELENS
    WINJUM, JK
    KEATLEY, JE
    STEVENS, RG
    GUTZWILER, JR
    JOURNAL OF FORESTRY, 1986, 84 (05) : 28 - 35
  • [43] THE ISOTOPIC AND CHEMICAL EVOLUTION OF MOUNT ST-HELENS
    HALLIDAY, AN
    FALLICK, AE
    DICKIN, AP
    MACKENZIE, AB
    STEPHENS, WE
    HILDRETH, W
    EARTH AND PLANETARY SCIENCE LETTERS, 1983, 63 (02) : 241 - 256
  • [44] TRAJECTORIES OF THE MOUNT ST-HELENS ERUPTION PLUME
    DANIELSEN, EF
    SCIENCE, 1981, 211 (4484) : 819 - 821
  • [45] ECOSYSTEM RESPONSES TO THE ERUPTION OF MOUNT ST-HELENS
    FRANKLIN, JF
    MACMAHON, JA
    SWANSON, FJ
    SEDELL, JR
    NATIONAL GEOGRAPHIC RESEARCH, 1985, 1 (02) : 198 - 216
  • [46] IMPACT ON AGRICULTURE OF THE MOUNT ST-HELENS ERUPTIONS
    COOK, RJ
    BARRON, JC
    PAPENDICK, RI
    WILLIAMS, GJ
    SCIENCE, 1981, 211 (4477) : 16 - 22
  • [47] PETROGENESIS OF MOUNT ST-HELENS DACITIC MAGMAS
    SMITH, DR
    LEEMAN, WP
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1987, 92 (B10): : 10313 - 10334
  • [48] LIDAR MEASUREMENTS OF MOUNT ST-HELENS EFFLUENTS
    MCCORMICK, MP
    OPTICAL ENGINEERING, 1982, 21 (02) : 340 - 342
  • [49] WIDESPREAD LATE GLACIAL AND POSTGLACIAL TEPHRA DEPOSITS FROM MOUNT ST-HELENS VOLCANO, WASHINGTON
    MULLINEAUX, DR
    HYDE, JH
    RUBIN, M
    JOURNAL OF RESEARCH OF THE US GEOLOGICAL SURVEY, 1975, 3 (03): : 329 - 335
  • [50] DEFORMATION MONITORING AT MOUNT ST-HELENS IN 1981 AND 1982
    CHADWICK, WW
    SWANSON, DA
    IWATSUBO, EY
    HELIKER, CC
    LEIGHLEY, TA
    SCIENCE, 1983, 221 (4618) : 1378 - 1380