APPLICATIONS OF THE SYMMETRICAL CHAIN DECOMPOSITION OF THE LATTICE OF DIVISORS

被引:0
|
作者
GRIGGS, JR [1 ]
ZHU, CZ [1 ]
机构
[1] UNIV S CAROLINA,DEPT MATH,COLUMBIA,SC 29208
关键词
LATTICE OF DIVISORS; MULTISETS; SYMMETRICAL CHAIN DECOMPOSITION; BRACKETING; LITTLEWOOD-OFFORD PROBLEM;
D O I
10.1007/BF01462228
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The symmetric chain decomposition of the lattice of divisors, D(N), is applied to prove results about the strict unimodality of the Whitney numbers of D(N), about minimum interval covers for the union of consecutive rank-sets of D(N), and about the distribution of sums of vectors in which each vector can be included several times (an extension of the famous Littlewood-Offord problem).
引用
收藏
页码:41 / 46
页数:6
相关论文
共 50 条
  • [41] On divisors of semigroups of order-preserving mappings of a finite chain
    V. H. Fernandes
    M. V. Volkov
    Semigroup Forum, 2010, 81 : 551 - 554
  • [42] Reduction of divisors for classical superintegrable GL(3) magnetic chain
    Tsiganov, A. V.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (11)
  • [43] SYMMETRICAL SYMPLECTIC CAPACITY WITH APPLICATIONS
    Liu, Chungen
    Wang, Qi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (06) : 2253 - 2270
  • [44] A Riemann singularities theorem for Prym theta divisors, with applications
    Smith, R
    Varley, R
    PACIFIC JOURNAL OF MATHEMATICS, 2001, 201 (02) : 479 - 509
  • [45] SYMMETRICAL PROPERTIES OF TRANSISTORS AND THEIR APPLICATIONS
    SZIKLAI, GC
    PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1953, 41 (06): : 717 - 724
  • [46] Decomposition of the divisors of a natural number into pairwise co-prime sets
    Murthy, A
    SMARANDACHE NOTIONS, VOL 12, 2001, 12 : 303 - 306
  • [47] Cryptanalysis of Schemes Based on Polynomial Symmetrical Decomposition
    LIU Jinhui
    ZHANG Huanguo
    JIA Jianwei
    Chinese Journal of Electronics, 2017, 26 (06) : 1139 - 1146
  • [48] Symmetrical Component Decomposition of DC Distribution Systems
    van der Blij, Nils H.
    Ramirez-Elizondo, Laura M.
    Spaan, Matthijs T. J.
    Bauer, Pavol
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (03) : 2733 - 2741
  • [49] Cryptanalysis of Schemes Based on Polynomial Symmetrical Decomposition
    Liu Jinhui
    Zhang Huanguo
    Jia Jianwei
    CHINESE JOURNAL OF ELECTRONICS, 2017, 26 (06) : 1139 - 1146
  • [50] Multilinear mapping and symmetrical decomposition of tensor space
    Zhao, Jian-li
    Zhang, Ying-shan
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON APPLIED MATRIX THEORY, 2009, : 276 - 278