INTEGRABILITY AND UNIFORMIZATION IN LIOUVILLE THEORY - THE GEOMETRICAL ORIGIN OF QUANTIZED SYMMETRIES

被引:14
|
作者
GOMEZ, C
SIERRA, G
机构
[1] UNIV GENEVA,DEPT PHYS THEOR,CH-1211 GENEVA,SWITZERLAND
[2] CSIC,INST FIS FUNDAMENTAL,MADRID 6,SPAIN
关键词
D O I
10.1016/0370-2693(91)91138-L
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We prove, in the classical limit of the Liouville theory, that the BPZ null vector decoupling equations admit a geometrical interpretation as uniformization equations. Using the Feigin-Fuchs representation of the Liouville theory we obtain a uniformization which gives rise to a propagator-vertex picture of the underlying Riemann surface. The space of solutions of these uniformization equations turns out to be the classical limit of the screened vertex operators and defines the spin-1/2 representation of the classical limit of SU(2)q+. This is the perturbative part of the full quantum group Q of the Liouville theory. In the strong coupling regime 1 < c < 25 the non perturbative quantum group is shown to be isomorphic to a quantum deformation of the four-dimensional Lorentz group.
引用
收藏
页码:51 / 60
页数:10
相关论文
共 36 条
  • [1] Uniformization in Riemann surface and Liouville field theory
    Shen, Jianmin
    Sheng, Zhengmao
    Li, Youquan
    Wuli Xuebao/Acta Physica Sinica, 1993, 42 (01): : 1 - 8
  • [2] Liouville theory and uniformization of four-punctured sphere
    Hadasz, Leszek
    Jaskolski, Zbigniew
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (08)
  • [3] Symmetries in geometrical optics: Theory
    Szilagyi, M.
    Mui, P.H.
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1995, 12 (12):
  • [4] Quantized branes and symmetries of string theory
    Dolan, L
    QUANTUM FIELD THEORY: PERSPECTIVE AND PROSPECTIVE, 1999, 530 : 139 - 160
  • [5] QUANTIZED GRAVITATIONAL THEORY AND INTERNAL SYMMETRIES
    KOMAR, A
    PHYSICAL REVIEW LETTERS, 1965, 15 (02) : 76 - +
  • [6] The omega deformation, branes, integrability and Liouville theory
    Nikita Nekrasov
    Edward Witten
    Journal of High Energy Physics, 2010
  • [7] The omega deformation, branes, integrability and Liouville theory
    Nekrasov, Nikita
    Witten, Edward
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (09):
  • [8] Integrability of Boundary Liouville Conformal Field Theory
    Remy, Guillaume
    Zhu, Tunan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 395 (01) : 179 - 268
  • [9] Integrability of Liouville theory: proof of the DOZZ formula
    Kupiainen, Antti
    Rhodes, Remi
    Vargas, Vincent
    ANNALS OF MATHEMATICS, 2020, 191 (01) : 81 - 166
  • [10] Integrability of Boundary Liouville Conformal Field Theory
    Guillaume Remy
    Tunan Zhu
    Communications in Mathematical Physics, 2022, 395 : 179 - 268