FAST STABILITY CHECKING FOR THE CONVEX COMBINATION OF STABLE POLYNOMIALS

被引:13
|
作者
BOUGUERRA, H [1 ]
CHANG, BC [1 ]
YEH, HH [1 ]
BANDA, SS [1 ]
机构
[1] WRDC FIGC,FLIGHT DYNAM LAB,WRIGHT PATTERSON AFB,OH 45433
关键词
D O I
10.1109/9.53530
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The approach to the stability of uncertain plants via polytopic polynomials often leads to a combinatoric explosion of the number of edges of a polytope whose stability has to be checked. To reduce the computational burden of this combinatoric explosion to a minimum, a fast algorithm for checking the stability of the edges of a polytope is proposed. © 1990 IEEE
引用
收藏
页码:586 / 588
页数:3
相关论文
共 50 条
  • [41] A sufficient condition for Hurwitz stability of the convex combination of two matrices
    Bialas, S
    [J]. CONTROL AND CYBERNETICS, 2004, 33 (01): : 109 - 112
  • [42] Robust strictly positive real synthesis for convex combination of the sixth-order polynomials
    Yu, WS
    Wang, L
    [J]. PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 3840 - 3845
  • [43] Motion planning with sequential convex optimization and convex collision checking
    Schulman, John
    Duan, Yan
    Ho, Jonathan
    Lee, Alex
    Awwal, Ibrahim
    Bradlow, Henry
    Pan, Jia
    Patil, Sachin
    Goldberg, Ken
    Abbeel, Pieter
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2014, 33 (09): : 1251 - 1270
  • [44] The property of bilinear transformation matrix and Schur stability for a linear combination of polynomials
    Shiomi, K
    Otsuka, N
    Inaba, H
    Ishii, R
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1999, 336 (03): : 533 - 541
  • [45] Approximate checking of polynomials and functional equations
    Ergun, F
    Kumar, SR
    Rubinfeld, R
    [J]. 37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, : 592 - 601
  • [46] A note on convex combinations of polynomials
    Blondel, V
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (11) : 1690 - 1691
  • [47] Representation of nonnegative convex polynomials
    Jean B. Lasserre
    [J]. Archiv der Mathematik, 2008, 91 : 126 - 130
  • [48] Hyperbolic polynomials and convex analysis
    Bauschke, HH
    Güler, O
    Lewis, AS
    Sendov, HS
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2001, 53 (03): : 470 - 488
  • [49] ERROR BOUNDS FOR CONVEX POLYNOMIALS
    Yang, W. H.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2009, 19 (04) : 1633 - 1647
  • [50] Representation of nonnegative convex polynomials
    Lasserre, Jean B.
    [J]. ARCHIV DER MATHEMATIK, 2008, 91 (02) : 126 - 130