A HIGHER-ORDER APPROACH FOR TIME-FRACTIONAL GENERALIZED BURGERS' EQUATION

被引:0
|
作者
Taneja, Komal [1 ]
Deswal, Komal [1 ]
Kumar, Devendra [1 ]
Baleanu, Dumitru [2 ,3 ]
机构
[1] Birla Inst Technol & Sci, Dept Math, Pilani 333031, Rajasthan, India
[2] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkiye
[3] Inst Space Sci, R-077125 Magurle Bucharest, Romania
关键词
Mittag-Leffler Kernel; Compact Finite Difference Method; Time-Fractional Generalized Burgers' Equation; Von-Neumann's Method; Stability; Convergence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A fast higher-order scheme is established for solving inhomogeneous time-fractional generalized Burgers' equation. The time-fractional operator is taken as the modified operator with the Mittag-Leffler kernel. Through stability analysis, it has been demonstrated that the proposed numerical approach is unconditionally stable. The convergence of the numerical method is analyzed theoretically using von Neumann's method. It has been proved that the proposed numerical method is fourth-order convergent in space and second-order convergent in time in the L2-norm. The scheme's proficiency and effectiveness are examined through two numerical experiments to validate the theoretical estimates. The tabular and graphical representations of numerical results confirm the high accuracy and versatility of the scheme.
引用
收藏
页数:22
相关论文
共 50 条