Estimates of the Restricted Isometry Constant in Super Greedy Algorithms

被引:2
|
作者
Wei Xiujie [1 ]
Ye Peixin
机构
[1] Nankai Univ, Sch Math, Tianjin 300071, Peoples R China
来源
INTERNATIONAL JOURNAL OF FUTURE GENERATION COMMUNICATION AND NETWORKING | 2015年 / 8卷 / 05期
关键词
Compressed Sensing; K -Sparse Signal; Orthogonal Multi Matching Pursuit; Orthogonal Super Greedy Algorithm; Restricted Isometry Constant;
D O I
10.14257/ijfgcn.2015.8.5.14
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Orthogonal Super Greedy Algorithm (OSGA) is a super greedy-type algorithm for sparse approximation. We analyze the convergence of OSGA based on Restricted Isometry Property (RIP). Our main conclusion is that if a matrix. satisfies the Restricted Isometry Property of order [sK] with isometry constant delta < root s/2 root s+root K, then OSGA (s) can exactly recover any K - sparse signal x from y = Phi x in at most K iterations.
引用
收藏
页码:137 / 144
页数:8
相关论文
共 50 条
  • [21] New Restricted Isometry Condition Using Null Space Constant for Compressed Sensing
    Zou, Haiyang
    Zhao, Wengang
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2022, E105A (12) : 1591 - 1603
  • [22] Almost optimality of orthogonal super greedy algorithms for incoherent dictionaries
    Shao, Chunfang
    Ye, Peixin
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2017, 15 (04)
  • [23] Dual Convergence Estimates for a Family of Greedy Algorithms in Banach Spaces
    Sidorov, S. P.
    Mironov, S. V.
    Pleshakov, M. G.
    MACHINE LEARNING, OPTIMIZATION, AND BIG DATA, MOD 2017, 2018, 10710 : 109 - 120
  • [24] Optimality of the Approximation and Learning by the Rescaled Pure Super Greedy Algorithms
    Zhang, Wenhui
    Ye, Peixin
    Xing, Shuo
    Xu, Xu
    AXIOMS, 2022, 11 (09)
  • [25] Duality Gap Estimates for Weak Chebyshev Greedy Algorithms in Banach Spaces
    S. V. Mironov
    S. P. Sidorov
    Computational Mathematics and Mathematical Physics, 2019, 59 : 904 - 914
  • [26] Duality Gap Estimates for Weak Chebyshev Greedy Algorithms in Banach Spaces
    Mironov, S. V.
    Sidorov, S. P.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2019, 59 (06) : 904 - 914
  • [27] Covering Radius and the Restricted Isometry Property
    Calderbank, Robert
    Jafarpour, Sina
    Nastasescu, Maria
    2011 IEEE INFORMATION THEORY WORKSHOP (ITW), 2011,
  • [28] New Bounds for Restricted Isometry Constants
    Cai, T. Tony
    Wang, Lie
    Xu, Guangwu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (09) : 4388 - 4394
  • [29] FUSION FRAMES AND THE RESTRICTED ISOMETRY PROPERTY
    Bodmann, Bernhard G.
    Cahill, Jameson
    Casazza, Peter G.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2012, 33 (7-9) : 770 - 790
  • [30] Certifying the Restricted Isometry Property is Hard
    Bandeira, Afonso S.
    Dobriban, Edgar
    Mixon, Dustin G.
    Sawin, William F.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (06) : 3448 - 3450