Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic

被引:180
|
作者
Wang, Kai [1 ]
Chen, Lei [1 ,2 ,3 ]
Xu, Chenguang [1 ]
Zhang, Wen [1 ]
Liu, Zhanguo [1 ,3 ]
Wang, Yujin [1 ,3 ]
Ouyang, Jiahu [1 ,3 ]
Zhang, Xinghong [2 ]
Fu, Yudong [4 ]
Zhou, Yu [1 ,3 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Natl Key Lab Sci & Technol Adv Composites Special, Harbin 150001, Peoples R China
[3] Harbin Inst Technol, Key Lab Adv Struct Funct Integrat Mat & Green Mfg, Harbin 150001, Peoples R China
[4] Harbin Engn Univ, Coll Mat Sci & Engn, Harbin 150001, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
High-entropy ceramic; (TiZrNbTaMo)C; Microstructure; Enhanced hardness; CARBIDE; ZRC; DENSIFICATION; STRENGTH; CERMETS;
D O I
10.1016/j.jmst.2019.07.056
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A high-entropy (TiZrNbTaMo)C ceramic has been successfully fabricated by hot pressing the newly-synthesized quinary carbide powder to investigate its microstructure and mechanical properties. The carbothermal reduction process of equimolar quinary metallic oxides at 1500 degrees C for 1 h generates a carbide powder mixture, which consists mainly of TaC- and ZrC-based solid solutions. The as-synthesized powder was then sintered to form a single-phase high-entropy ceramic by a two-step hot pressing at 1850 degrees C for 1 h and 2100 degrees C for 0.5 h, respectively. The high-entropy ceramic exhibits a fine grain size of about 8.8 pina, a high compositional uniformity and a high relative density of 98.6% by adding Mo as the strategic main component. The measured nanohardness values of (TiZrNbTaMo)C ceramic are 25.3 GPa at 9.8 N and 31.3 GPa at 100 mN, respectively, which are clearly higher than those of other available high-entropy carbide ceramics. (C) 2019 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:99 / 105
页数:7
相关论文
共 50 条
  • [31] Processing, Microstructure and Mechanical Properties of the CrMnFeCoNi High-Entropy Alloy
    Bernd Gludovatz
    Easo P. George
    Robert O. Ritchie
    JOM, 2015, 67 : 2262 - 2270
  • [32] Single-phase formation and mechanical properties of (TiZrNbTaMo)C high-entropy ceramics: First-principles prediction and experimental study
    Lu, Wenyu
    Chen, Lei
    Zhang, Wen
    Su, Wentao
    Wang, Yujin
    Fu, Yudong
    Zhou, Yu
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2022, 42 (05) : 2021 - 2027
  • [33] Formation mechanism of high-entropy spinel thin film and its mechanical and magnetic properties: Linking high-entropy alloy to high-entropy ceramic
    Minouei, Hossein
    Kheradmandfard, Mehdi
    Rizi, Mohsen Saboktakin
    Jalaly, Maisam
    Kim, Dae-Eun
    Hong, Sun Ig
    APPLIED SURFACE SCIENCE, 2022, 576
  • [34] Effects of nitrogen concentration on the microstructure and mechanical properties of nanocrystalline (TiZrNbTaMo)N high-entropy nitride coatings: Experimental investigations and first-principles calculations
    Zhao, Yanjie
    Jiang, Minming
    Xu, Jiang
    Xie, Zong-Han
    Munroe, Paul
    VACUUM, 2024, 219
  • [35] Synthesis, microstructure, mechanical and tribological properties of high-entropy carbides (WZrNbTaTi)C-SiCw
    Zhang, Jiatai
    Wang, Weili
    Zhang, Zhixuan
    Wei, Sijie
    Zhang, Qiang
    Zhang, Zongyao
    Zhang, Weibin
    CERAMICS INTERNATIONAL, 2024, 50 (23) : 50780 - 50792
  • [36] A superfine eutectic microstructure and the mechanical properties of CoCrFeNiMox high-entropy alloys
    Guo, Yong
    Liu, Liang
    Zhang, Yue
    Qi, Jingang
    Wang, Bing
    Zhao, Zuofu
    Shang, Jian
    Xiang, Jun
    JOURNAL OF MATERIALS RESEARCH, 2018, 33 (19) : 3258 - 3265
  • [37] Microstructure and Mechanical Properties of a FeMnCoCr High-Entropy Alloy with Heterogeneous Structure
    Wang Hongwei
    He Zhufeng
    Jia Nan
    ACTA METALLURGICA SINICA, 2021, 57 (05) : 632 - 640
  • [38] Microstructure characteristics and mechanical properties of NbMoTiVWSix refractory high-entropy alloys
    Qin Xu
    Qi Wang
    De-zhi Chen
    Yi-ang Fu
    Qing-sheng Shi
    Ya-jun Yin
    Shu-yan Zhang
    ChinaFoundry, 2022, 19 (06) : 495 - 502
  • [39] Effect of Ti on Microstructure and Mechanical Properties of CoFeNiVTix High-Entropy Alloys
    Feng, Zhengzhong
    Zhang, Cun
    Gu, Chenxi
    Xu, Mingqin
    Yang, Lin
    Wang, Lu
    Yi, Jiaojiao
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 33 (24) : 14247 - 14255
  • [40] Microstructure and mechanical properties of a novel refractory AlNbTiZr high-entropy alloy
    Chen, W.
    Tang, Q. H.
    Wang, H.
    Xie, Y. C.
    Yan, X. H.
    Dai, P. Q.
    MATERIALS SCIENCE AND TECHNOLOGY, 2018, 34 (11) : 1309 - 1315