Optimising the Heuristics in Latent Semantic Indexing for Effective Information Retrieval

被引:5
|
作者
Srinivas, S. [1 ]
AswaniKumar, Ch [2 ]
机构
[1] Deemed Univ, Sch Sci & Human, Vellore Inst Technol, Vellore, Tamil Nadu, India
[2] Deemed Univ, Sch Comp Sci, Vellore Inst Technol, Vellore, Tamil Nadu, India
关键词
Information retrieval; Latent Semantic Indexing; rank approximation; term weighting; vector space method;
D O I
10.1142/S0219649206001359
中图分类号
G25 [图书馆学、图书馆事业]; G35 [情报学、情报工作];
学科分类号
1205 ; 120501 ;
摘要
Latent Semantic Indexing (LSI) is a famous Information Retrieval (IR) technique that tries to overcome the problems of lexical matching using conceptual indexing. LSI is a variant of vector space model and proved to be 30% more effective. Many studies have reported that good retrieval performance is related to the use of various retrieval heuristics. In this paper, we focus on optimising two LSI retrieval heuristics: term weighting and rank approximation. The results obtained demonstrate that the LSI performance improves significantly with the combination of optimised term weighting and rank approximation.
引用
下载
收藏
页码:97 / 105
页数:9
相关论文
共 50 条
  • [21] Framework for document retrieval using latent semantic indexing
    Phadnis, Neelam
    Gadge, Jayant
    International Journal of Computers and Applications, 2014, 94 (14) : 37 - 41
  • [22] Latent semantic indexing-based intelligent information retrieval system for digital libraries
    School of Computer Sciences, Vellore Institute of Technology, Deemed University, Vellore
    632014, India
    J. Compt. Inf. Technol., 2006, 3 (191-196):
  • [23] Application of latent semantic indexing on Malay-English cross language information retrieval
    Abdullah, MT
    Ahmad, F
    Mahmod, R
    Sembok, TMT
    DIGITAL LIBRARIES: TECHNOLOGY AND MANAGEMENT OF INDIGENOUS KNOWLEDGE FOR GLOBAL ACCESS, 2003, 2911 : 663 - 665
  • [24] Information retrieval and text categorization with semantic indexing
    Rosso, P
    Molina, A
    Pla, F
    Jiménez, D
    Vidal, V
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, 2004, 2945 : 596 - 600
  • [25] Analysis of a Vector Space Model, Latent Semantic Indexing and Formal Concept Analysis for Information Retrieval
    Kumar, Ch Aswani
    Radvansky, M.
    Annapurna, J.
    CYBERNETICS AND INFORMATION TECHNOLOGIES, 2012, 12 (01) : 34 - 48
  • [26] A latent image semantic indexing scheme for image retrieval on the web
    Li, Xiaoyan
    Shou, Lidan
    Chen, Gang
    Ou, Lujiang
    WEB INFORMATION SYSTEMS - WISE 2006, PROCEEDINGS, 2006, 4255 : 315 - 326
  • [27] Keyword and face image retrieval based on latent semantic indexing
    Ito, H
    Koshimizu, H
    2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 358 - 363
  • [28] Intelligent information management using latent semantic indexing
    Berry, MW
    Witter, DI
    MINING AND MODELING MASSIVE DATA SETS IN SCIENCE, ENGINEERING, AND BUSINESS WITH A SUBTHEME IN ENVIRONMENTAL STATISTICS, 1997, 29 (01): : 273 - 280
  • [29] Efficient storage and retrieval of probabilistic latent semantic information for information retrieval
    Laurence A. F. Park
    Kotagiri Ramamohanarao
    The VLDB Journal, 2009, 18 : 141 - 155
  • [30] Efficient storage and retrieval of probabilistic latent semantic information for information retrieval
    Park, Laurence A. F.
    Ramamohanarao, Kotagiri
    VLDB JOURNAL, 2009, 18 (01): : 141 - 155