SENSING OF DRILL WEAR AND PREDICTION OF DRILL LIFE

被引:38
|
作者
SUBRAMANIAN, K [1 ]
COOK, NH [1 ]
机构
[1] MIT,DEPT MECH ENGN,CAMBRIDGE,MA 02139
关键词
D O I
10.1115/1.3439211
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
引用
收藏
页码:295 / 301
页数:7
相关论文
共 50 条
  • [41] Computational imaging for drill bit wear estimation
    Dello Iacono, Salvatore
    Di Leo, Giuseppe
    Liguori, Consolatina
    [J]. 2021 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2021), 2021,
  • [42] Drill wear monitoring based on current signals
    Li, XL
    Tso, SK
    [J]. WEAR, 1999, 231 (02) : 172 - 178
  • [43] BALANCED DRILL DESIGN SLOWS BODY WEAR
    BAK, DJ
    [J]. DESIGN NEWS, 1980, 36 (02) : 82 - 82
  • [44] Drill wear monitoring using neural networks
    Lin, SC
    Ting, CJ
    [J]. INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 1996, 36 (04): : 465 - 475
  • [45] Effect of pulsed magnetic treatment on drill wear
    Bataineh, O
    Klamecki, B
    Koepke, BG
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2003, 134 (02) : 190 - 196
  • [46] Drill wear monitoring in cortical bone drilling
    Staroveski, Tomislav
    Brezak, Danko
    Udiljak, Toma
    [J]. MEDICAL ENGINEERING & PHYSICS, 2015, 37 (06) : 560 - 566
  • [47] FATIGUE LIFE PREDICTION OF DRILL-STRING SUBJECTED TO RANDOM LOADINGS
    Zheng, Jiahao
    Qiu, Hongyuan
    Yang, Jianming
    Butt, Stephen
    [J]. ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2014, VOL 4B, 2015,
  • [48] SVM optimal prediction model of backfill drill-hole life
    Zhang, Qinli
    Chen, Qiusong
    Hu, Wei
    Gao, Ruiwen
    [J]. Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2014, 45 (02): : 536 - 541
  • [49] Effect of different features to drill-wear prediction with back propagation neural network
    Xu, Jie
    Yamada, Keiji
    Seikiya, Katsuhiko
    Tanaka, Ryutaro
    Yamane, Yasuo
    [J]. PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2014, 38 (04): : 791 - 798
  • [50] PCA fused NN approach for drill wear prediction in drilling mild steel specimen
    Panda, S. S.
    Mahapatra, S. S.
    [J]. 2009 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 5, 2009, : 85 - +