STABILITY IN TOTALLY NONLINEAR NEUTRAL DYNAMIC EQUATIONS ON TIME SCALES

被引:0
|
作者
Belaid, Malik [1 ]
Ardjouni, Abdelouaheb [1 ,2 ]
Djoudi, Ahcene [1 ]
机构
[1] Univ Souk Ahras, Dept Math & Informat, POB 1553, Souk Ahras 41000, Croatia
[2] Univ Annaba, Appl Math Lab, Fac Sci, Dept Math, POB 12, Annaba 23000, Algeria
来源
关键词
Fixed points; neutral dynamic equations; stability; time scales;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let U be a time scale which is unbounded above and below and such that 0 is an element of T. Let id - tau : [0, infinity) boolean AND T -> T be such that (id - tau) ([0, infinity) boolean AND T) is a time scale. We use the Krasnoselskii-Burton's fixed point theorem to obtain stability results about the zero solution for the following totally nonlinear neutral dynamic equation with variable delay x(Delta)(t) = -a (t) h (x(sigma) (t)) + c (t) x (Delta) over tilde (t - tau (t)) + b (t) G (x (t), x (t - T (t)), t is an element of [0, infinity) boolean AND T, where f(Delta) A is the Delta-derivative on U and f (Delta) over tilde is the Delta-derivative on (id - tau) (T). The results obtained here extend the work of Ardjouni, Derrardjia and Djoudi [2].
引用
收藏
页码:110 / 123
页数:14
相关论文
共 50 条
  • [21] Frequent Oscillatory Criteria for Nonlinear Neutral Variable Delay Dynamic Equations on Time Scales
    Xu, Lihua
    Yang, Jun
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 757 - 761
  • [22] On the oscillation for third-order nonlinear neutral delay dynamic equations on time scales
    Sun, Yibing
    Han, Zhenlai
    Zhang, Yongxiang
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 54 (1-2) : 243 - 261
  • [23] Oscillation of second-order nonlinear neutral delay dynamic equations on time scales
    Saker, SH
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 187 (02) : 123 - 141
  • [24] Oscillation of Solutions to Third-Order Nonlinear Neutral Dynamic Equations on Time Scales
    Qiu, Yang-Cong
    Chiu, Kuo-Shou
    Grace, Said R.
    Liu, Qingmin
    Jadlovska, Irena
    MATHEMATICS, 2022, 10 (01)
  • [25] Stability for neutral integro-dynamic equations with multiple functional delays on time scales
    Khelil, Kamel Ali
    Ardjouni, Abdelouaheb
    Djoudi, Ahcene
    TBILISI MATHEMATICAL JOURNAL, 2021, 14 (03) : 127 - 140
  • [26] STABILITY BY KRASNOSELSKII'S THEOREM IN TOTALLY NONLINEAR NEUTRAL DIFFERENTIAL EQUATIONS
    Derrardjia, Ishak
    Ardjouni, Abdelouaheb
    Djoudi, Ahcene
    OPUSCULA MATHEMATICA, 2013, 33 (02) : 255 - 272
  • [27] h-stability for nonlinear abstract dynamic equations on time scales and applications
    Neggal, Bilel
    Boukerrioua, Khaled
    Kilani, Brahim
    Meziri, Imen
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (03) : 1017 - 1031
  • [28] h-stability for nonlinear abstract dynamic equations on time scales and applications
    Bilel Neggal
    Khaled Boukerrioua
    Brahim Kilani
    Imen Meziri
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 1017 - 1031
  • [29] Oscillation for neutral dynamic functional equations on time scales
    Mathsen, RM
    Wang, QR
    Wu, HW
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2004, 10 (07) : 651 - 659
  • [30] Oscillation of nonlinear dynamic equations on time scales
    Saker, SH
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 148 (01) : 81 - 91