An isotope dilution-thermal ionization mass spectrometry method for the determination of parts-per-million levels of iron in zirconium is required for precise, accurate analyses in studies of the effects of iron on the irradiation deformation of nuclear alloys. A two-stage purification procedure was developed to avoid the signal suppression and interference caused by the zirconium matrix. After sample dissolution and spiking with Fe-54, the bulk of the zirconium is removed by ion exchange chromatography, and the eluted Fe(III) is further purified by micro-solvent extraction into tributyl phosphate-impregnated resin beads. The iron is back-extracted, submicrogram amounts are loaded onto previously outgassed zone-refined Re filaments, and 54/56 ratios are measured at 1170 degrees C. A silica gel/boric acid ionization enhancer is used to obtain stable Fe+ currents as strong as 2 x 10(-14) A from nanogram loadings of pure iron. The procedural blank of 20 +/- 6 ng is sufficiently low to allow determination of ppm levels of iron in 0.1 g zirconium samples. The analyses of solution standards showed agreement within 2% between measured and expected values, and a good fit, r(2) = 0.99997, to a linear regression. The analyses of metal standards exhibited a similar good fit to a linear regression of measured against expected values, and showed good agreement with other methods. The method meets the requirements for zirconium metallurgical studies, and may be extended to other applications.