Will remote sensing shape the next generation of species distribution models?

被引:254
|
作者
He, Kate S. [1 ]
Bradley, Bethany A. [2 ]
Cord, Anna F. [3 ]
Rocchini, Duccio [4 ]
Tuanmu, Mao-Ning [5 ]
Schmidtlein, Sebastian [6 ]
Turner, Woody [7 ]
Wegmann, Martin [8 ,9 ]
Pettorelli, Nathalie [10 ]
机构
[1] Murray State Univ, Dept Biol Sci, Murray, KY 42071 USA
[2] Univ Massachusetts, Dept Environm Conservat, Amherst, MA 01003 USA
[3] UFZ Helmholtz Ctr Environm Res, Dept Computat Landscape Ecol, D-04318 Leipzig, Germany
[4] Fdn Edmund Mach, GIS & Remote Sensing Unit, Dept Biodivers & Mol Ecol, Res & Innovat Ctr, I-38010 San Michele All Adige, Trento, Italy
[5] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06520 USA
[6] KIT, Inst Geog & Geoecol, D-76131 Karlsruhe, Germany
[7] NASA, Earth Sci Div, Washington, DE USA
[8] Univ Wurzburg, Dept Remote Sensing, D-97074 Wurzburg, Germany
[9] German Aerosp Ctr DLR, CEOS Biodivers, German Remote Sensing Data Ctr, D-82234 Wessling, Germany
[10] Zool Soc London, Inst Zool, London NW1 4RY, England
关键词
Ecological niche modeling; habitat suitability modeling; hyperspectral and multispectral data; LiDAR and RADAR metrics; predictor and response variables; spatial and temporal resolution;
D O I
10.1002/rse2.7
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Two prominent limitations of species distribution models (SDMs) are spatial biases in existing occurrence data and a lack of spatially explicit predictor variables to fully capture habitat characteristics of species. Can existing and emerging remote sensing technologies meet these challenges and improve future SDMs? We believe so. Novel products derived from multispectral and hyperspectral sensors, as well as future Light Detection and Ranging (LiDAR) and RADAR missions, may play a key role in improving model performance. In this perspective piece, we demonstrate how modern sensors onboard satellites, planes and unmanned aerial vehicles are revolutionizing the way we can detect and monitor both plant and animal species in terrestrial and aquatic ecosystems as well as allowing the emergence of novel predictor variables appropriate for species distribution modeling. We hope this interdisciplinary perspective will motivate ecologists, remote sensing experts and modelers to work together for developing a more refined SDM framework in the near future.
引用
下载
收藏
页码:4 / 18
页数:15
相关论文
共 50 条
  • [21] Comparing temperature data sources for use in species distribution models: From in-situ logging to remote sensing
    Lembrechts, Jonas J.
    Lenoir, Jonathan
    Roth, Nina
    Hattab, Tarek
    Milbau, Ann
    Haider, Sylvia
    Pellissier, Loic
    Pauchard, Anibal
    Backes, Amanda Ratier
    Dimarco, Romina D.
    Nunez, Martin A.
    Aalto, Juha
    Nijs, Ivan
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2019, 28 (11): : 1578 - 1596
  • [22] Inclusion of habitat availability in species distribution models through multi-temporal remote-sensing data?
    Cord, Anna
    Roedder, Dennis
    ECOLOGICAL APPLICATIONS, 2011, 21 (08) : 3285 - 3298
  • [23] Predictive mapping of bryophyte richness patterns in boreal forests using species distribution models and remote sensing data
    Cerrejon, Carlos
    Valeria, Osvaldo
    Mansuy, Nicolas
    Barbe, Marion
    Fenton, Nicole J.
    ECOLOGICAL INDICATORS, 2020, 119 (119)
  • [24] Using unclassified continuous remote sensing data to improve distribution models of red-listed plant species
    Miia Parviainen
    Niklaus E. Zimmermann
    Risto K. Heikkinen
    Miska Luoto
    Biodiversity and Conservation, 2013, 22 : 1731 - 1754
  • [25] Remote sensing archaeology: The next century
    Luo, Lei
    Wang, Xinyuan
    Guo, Huadong
    INNOVATION, 2022, 3 (06):
  • [26] On-Orbit Absolute Radiance Standard for the Next Generation of IR Remote Sensing Instruments
    Best, Fred A.
    Adler, Douglas P.
    Pettersen, Claire
    Revercomb, Henry E.
    Gero, P. Jonathan
    Taylor, Joseph K.
    Knuteson, Robert O.
    Perepezko, John H.
    MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL REMOTE SENSING TECHNOLOGY, TECHNIQUES AND APPLICATIONS IV, 2012, 8527
  • [27] Educating the Next Generation of Remote Sensing Specialists: Skills and Industry Needs in a Changing World
    Chasmer, Laura E.
    Ryerson, Robert A.
    Coburn, Craig A.
    CANADIAN JOURNAL OF REMOTE SENSING, 2022, 48 (01) : 55 - 70
  • [28] Flow sensing: The next generation
    Ginesi, D
    CONTROL ENGINEERING, 1997, : 40 - &
  • [29] Flow sensing: The next generation
    Ginesi, D
    CONTROL ENGINEERING, 1997, 44 (15) : 56 - &
  • [30] Can remote sensing of land cover improve species distribution modelling?
    Bradley, Bethany A.
    Fleishman, Erica
    JOURNAL OF BIOGEOGRAPHY, 2008, 35 (07) : 1158 - 1159