Will remote sensing shape the next generation of species distribution models?

被引:254
|
作者
He, Kate S. [1 ]
Bradley, Bethany A. [2 ]
Cord, Anna F. [3 ]
Rocchini, Duccio [4 ]
Tuanmu, Mao-Ning [5 ]
Schmidtlein, Sebastian [6 ]
Turner, Woody [7 ]
Wegmann, Martin [8 ,9 ]
Pettorelli, Nathalie [10 ]
机构
[1] Murray State Univ, Dept Biol Sci, Murray, KY 42071 USA
[2] Univ Massachusetts, Dept Environm Conservat, Amherst, MA 01003 USA
[3] UFZ Helmholtz Ctr Environm Res, Dept Computat Landscape Ecol, D-04318 Leipzig, Germany
[4] Fdn Edmund Mach, GIS & Remote Sensing Unit, Dept Biodivers & Mol Ecol, Res & Innovat Ctr, I-38010 San Michele All Adige, Trento, Italy
[5] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06520 USA
[6] KIT, Inst Geog & Geoecol, D-76131 Karlsruhe, Germany
[7] NASA, Earth Sci Div, Washington, DE USA
[8] Univ Wurzburg, Dept Remote Sensing, D-97074 Wurzburg, Germany
[9] German Aerosp Ctr DLR, CEOS Biodivers, German Remote Sensing Data Ctr, D-82234 Wessling, Germany
[10] Zool Soc London, Inst Zool, London NW1 4RY, England
关键词
Ecological niche modeling; habitat suitability modeling; hyperspectral and multispectral data; LiDAR and RADAR metrics; predictor and response variables; spatial and temporal resolution;
D O I
10.1002/rse2.7
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Two prominent limitations of species distribution models (SDMs) are spatial biases in existing occurrence data and a lack of spatially explicit predictor variables to fully capture habitat characteristics of species. Can existing and emerging remote sensing technologies meet these challenges and improve future SDMs? We believe so. Novel products derived from multispectral and hyperspectral sensors, as well as future Light Detection and Ranging (LiDAR) and RADAR missions, may play a key role in improving model performance. In this perspective piece, we demonstrate how modern sensors onboard satellites, planes and unmanned aerial vehicles are revolutionizing the way we can detect and monitor both plant and animal species in terrestrial and aquatic ecosystems as well as allowing the emergence of novel predictor variables appropriate for species distribution modeling. We hope this interdisciplinary perspective will motivate ecologists, remote sensing experts and modelers to work together for developing a more refined SDM framework in the near future.
引用
收藏
页码:4 / 18
页数:15
相关论文
共 50 条
  • [1] Remote sensing variables improve species distribution models for alpine plant species
    Schwager, Patrick
    Berg, Christian
    [J]. BASIC AND APPLIED ECOLOGY, 2021, 54 : 1 - 13
  • [2] Penetrating remote sensing: Next-generation remote sensing for transparent earth
    Wang, Lizhe
    Zuo, Boxin
    Le, Yuan
    Chen, Yifu
    Li, Jun
    [J]. INNOVATION, 2023, 4 (06):
  • [3] Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models
    Randin, Christophe F.
    Ashcroft, Michael B.
    Bolliger, Janine
    Cavender-Bares, Jeannine
    Coops, Nicholas C.
    Dullinger, Stefan
    Dirnboeck, Thomas
    Eckert, Sandra
    Ellis, Erle
    Fernandez, Nestor
    Giuliani, Gregory
    Guisan, Antoine
    Jetz, Walter
    Joost, Stephane
    Karger, Dirk
    Lembrechts, Jonas
    Lenoir, Jonathan
    Luoto, Miska
    Morin, Xavier
    Price, Bronwyn
    Rocchini, Duccio
    Schaepman, Michael
    Schmid, Bernhard
    Verburg, Peter
    Wilson, Adam
    Woodcock, Paul
    Yoccoz, Nigel
    Payne, Davnah
    [J]. REMOTE SENSING OF ENVIRONMENT, 2020, 239
  • [4] Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models
    Randin, Christophe F.
    Ashcroft, Michael B.
    Bolliger, Janine
    Cavender-Bares, Jeannine
    Coops, Nicholas C.
    Dullinger, Stefan
    Dirnböck, Thomas
    Eckert, Sandra
    Ellis, Erle
    Fernández, Néstor
    Giuliani, Gregory
    Guisan, Antoine
    Jetz, Walter
    Joost, Stéphane
    Karger, Dirk
    Lembrechts, Jonas
    Lenoir, Jonathan
    Luoto, Miska
    Morin, Xavier
    Price, Bronwyn
    Rocchini, Duccio
    Schaepman, Michael
    Schmid, Bernhard
    Verburg, Peter
    Wilson, Adam
    Woodcock, Paul
    Yoccoz, Nigel
    Payne, Davnah
    [J]. Remote Sensing of Environment, 2021, 239
  • [5] Next generation microbolometers for high resolution remote sensing
    Phong, LN
    Lee, J
    Zheng, W
    [J]. 2005 International Conference on MEMS, NANO and Smart Systems, Proceedings, 2005, : 197 - 198
  • [6] Space pixels: The next generation of earth remote sensing
    Parris, TM
    [J]. ENVIRONMENT, 2000, 42 (07): : 3 - 5
  • [7] Information Needs of Next-Generation Forest Carbon Models: Opportunities for Remote Sensing Science
    Boisvenue, Celine
    White, Joanne C.
    [J]. REMOTE SENSING, 2019, 11 (04)
  • [8] THIS: next-generation infrared heterodyne spectrometer for remote sensing
    Wirtz, D
    Sonnabend, G
    Schieder, R
    [J]. INFRARED SPACEBORNE REMOTE SENSING XI, 2003, 5152 : 83 - 91
  • [9] Next-Generation Pushbroom Filter Radiometers for Remote Sensing
    Tarde, Richard W.
    Dittman, Michael G.
    Kvaran, Geir E.
    [J]. EARTH OBSERVING SYSTEMS XVII, 2012, 8510
  • [10] Next generation remote sensing: gas and aerosol monitoring sensorcraft (GAMS)
    Koch, MR
    Sandford, SP
    Zawodny, JM
    [J]. MULTISPECTRAL IMAGING FOR TERRESTRIAL APPLICATIONS II, 1997, 3119 : 80 - 89